• 제목/요약/키워드: boots deformation

검색결과 3건 처리시간 0.017초

Computer Simulation of Deformation in a Rubber Boots for Translation and Rotation of CV-joint for Automobile

  • Lee, Min-A;Lyu, Min-Young
    • Elastomers and Composites
    • /
    • 제55권2호
    • /
    • pp.88-94
    • /
    • 2020
  • Automobile industry, along with the automobile steering system, is rapidly changing and developing. The constant velocity joint transmits power to the wheels of vehicles without changing their angular velocity based on the movement of the steering wheel. Moreover, it controls their movement to act as a buffer. In order to prevent the excessive increase in temperature caused by the movement of vehicles, boots are attached to the constant velocity joint and lubricant is injected into the boots. The boots maintain the lubrication and protect the constant velocity joint from sand, water, and so on. As the wheels of the vehicle rotate, the boots are acted upon by forces such as bending, compression, and tension. Additionally, self-contact occurs to boots. Therefore, their durability deteriorates over time. To prevent this problem, polychloroprene rubber was initially used however, it was replaced by thermoplastic polyester elastomers due to their excellent fatigue durability. In this study, the structural analysis of boots was conducted. The results showed the deformation patterns of the boots based on the translation and rotation of the constant velocity joint. Moreover, it confirmed the location that was vulnerable to deformation. This study can be used to potentially design high-quality constant velocity joint boots.

3차원 자체접촉을 위한 유한요소해석에 의한 등속조인트 고무부트의 변형해석 (Finite element analysis for 3-D self-contact problems of C.v.joint rubber boots)

  • 이형욱;김세호;이충호;허훈;이종화;오승탁
    • 대한기계학회논문집A
    • /
    • 제21권12호
    • /
    • pp.2121-2133
    • /
    • 1997
  • A finite element code is developed for 3-D self-contact problems, using continuum elements with a SRI(Selective Reduced Integration) scheme to prevent locking phenomenon by the incompressibility of rubber. Contact treatment is carried out in two ways : using the displacement constraints in case of rigid contact ; and imposing the same contact forces on two contact boundaries in case of self-contact. The finite element code developed is applied to the deformation analysis of C.V.joint boots which maintain lubrication conditions and protect the C.V.joint assembly from impact and dust. The boot accompanies large rotation depending on the rotation of the wheel axis and leading to the self-contact phenomena of the boot bellows. Since this contact phenomenon causes wear of the product and has great influence on the endurance life of the product, it is indispensable to carry out stress analysis of the rubber boots. In case of self-contact, various methods for determining contact forces have been suggested with an appropriate contact formulation. Especially, the types of penetration in self-contact are modularized to accelerate conputation with a contact algorithm.

유한요소법을 이용한 등속 조인트 고무 부트의 변형해석 및 설계변경에의 응용 (Stress Analysis of C.V. Joint Rubber Boots by Finite Element Method and Application to Design Modification)

  • 김세호;이형욱;허훈;이종화;오승탁
    • 한국자동차공학회논문집
    • /
    • 제6권3호
    • /
    • pp.123-137
    • /
    • 1998
  • The finite deformation with self contact problem of C. V. joint boots is analysed by using the implicit finite element code ABAQUS/Standard. It is shown that analysis results have a good agreement with experimental ones to the degree of maximum rotation angle. As an application of design modification, the effects of thickness change of the rounded part of boot model on the bending and the contact situation of deformed geometry are investigated. In this paper, the effect of the design modification in the end on the leakage is examined using 2-D finite element simulation. To solve the leakage problem of grease, the length of the small end is enlarged. From this study, it is confirmed that we can save the cost and time by applying FEM techniques to analyze and design the boot model.

  • PDF