• 제목/요약/키워드: bone substitute material

검색결과 65건 처리시간 0.027초

Consequence of Synthetic Bone Substitute Used for Alveolar Cleft Graft Reconstruction (Preliminary Clinical Study)

  • Rawaa Y. Al-Rawee;Bashar Abdul-Ghani Tawfeeq;Ahmed Mothafar Hamodat;Zaid Salim Tawfek
    • Archives of Plastic Surgery
    • /
    • 제50권5호
    • /
    • pp.478-487
    • /
    • 2023
  • Background The outcome of alveolar grafting with synthetic bone substitute (Osteon III) in various bone defect volumes is highlighted. Methods A prospective study was accomplished on 55 patients (6-13 years of age) with unilateral alveolar bone cleft. Osteon III, consisting of hydroxyapatite and tricalcium phosphate, is used to reconstruct the defect. Alveolus defect diameter was calculated before surgery (V1), after 3 months (V2), and finally after 6 months (V3) postsurgery. In the t-test, a significant difference and correlation between V1, V2, and V3 are stated. A p-value of 0.01 is considered a significant difference between parameters. Results The degree of cleft is divided into three categories: small (9 cases), medium (20 patients), and large (26 cases).The bone volume of the clefted site is divided into three steps: volume 1: (mean 18.1091 mm3); step 2: after 3 months, volume 2 resembles the amount of unhealed defect (mean 0.5109 mm3); and the final bone volume assessment is made after 6 months (22.5455 mm3). Both show statistically significant differences in bone volume formation. Conclusion An alloplastic bone substitute can also be used as a graft material because of its unlimited bone retrieval. Osteon III can be used to reconstruct the alveolar cleft smoothly and effectively.

Repair of sports bone injury based on multifunctional nanomaterial particles

  • Dongbai Guo
    • Structural Engineering and Mechanics
    • /
    • 제86권4호
    • /
    • pp.487-501
    • /
    • 2023
  • Nanoparticles have lower size and larger specific surface area, good stability and less toxic and side effects. In recent years, with the development of nanotechnology, its application range has become wider and wider, especially in the field of biomedicine, which has received more and more attention. Bone defect repair materials with high strength, high elasticity and high tissue affinity can be prepared by nanotechnology. The purpose of this paper was to study how to analyze and study the composite materials for sports bone injury based on multifunctional nanomaterials, and described the electrospinning method. In this paper, nano-sized zirconia (ZrO2) filled micro-sized hydroxyapatite (HAP) composites were prepared according to the mechanical properties of bone substitute materials in the process of human rehabilitation. Through material tensile and compression experiments, the performance parameters of ZrO2/HAP composites with different mass fraction ratios were analyzed, the influence of filling ZrO2 particles on the mechanical properties of HAP matrix materials was clarified, and the effect of ZrO2 mass fraction on the mechanical properties of matrix materials was analyzed. From the analysis of the compressive elastic modulus, when the mass fraction of ZrO2 was 15%, the compressive elastic modulus of the material was 1222 MPa, and when 45% was 1672 MPa. From the analysis of compression ratio stiffness, when the mass fraction of ZrO2 was 15%, the compression ratio stiffness was 658.07 MPa·cm3/g, and when it was 45%, the compression ratio stiffness is 943.51MPa·cm3/g. It can be seen that by increasing the mass fraction of ZrO2, the stiffness of the composite material can be effectively increased, and the ability of the material to resist deformation would be increased. Typically, the more stressed the bone substitute material, the greater the stiffness of the compression ratio. Different mass fractions of ZrO2/HAP filling materials can be selected to meet the mechanical performance requirements of sports bone injury, and it can also provide a reference for the selection of bone substitute materials for different patients.

폴리카프로락톤 실리카 나노 복합체를 이용한 골이식대체재 개발에 관한 연구 (Study on the development of polycaprolacton silica nanohybrid for bone substitutes)

  • 정근식;임성빈;정진형;홍기석;김종여
    • Journal of Periodontal and Implant Science
    • /
    • 제34권2호
    • /
    • pp.425-448
    • /
    • 2004
  • A bioactive and degradable poly(epsilon -caprolactone)/silica nanohybrid(PSH) was synthesized for the application as a bone substitute. PSH was manufactured by using silica and polycaprolacton. PSH was manufactured in some composition after low crystaline apatite had been formed in simulated body fluid and, was used this study. The safety of the PSH was established by test of acute, and subacute toxicity, sensitization cytotoxicity and sterility. In order to assess activity of osteoblast, the test for attaching osteoblast, proliferation test for osteoblast, differentiating gene expression test are performed in vitro. And bone substitutes were grafted in rabbit's calvarium, during 8 weeks for testing efficacy of bone substitutes. Degree of osteogenesis and absorption of substitutes were evaluated in microscopic level. In result, it was not appeared that acute and subacute toxicity, sensitization in intradermal induction phase, topical induction phase and challenge phase. It was shown that the test can not inhibit cell proliferation. adversely, it had some ability to accelerate cell proliferation. The result of sterility test described bacterial growth was not detected in most test tube. The attaching and proliferation test of osteoblast had good results. In the result of differentiating gene expression test for osteoblast, cbfa1 and, alkaline phosphatase, osteocalcin and GAPDH were detected with mRNA analysis. In the PSH bone formation test, ostgeoblastic activity would be different as material constitution but it had good new bone formation ability except group #218. futhermore, some material had been absorbed within 8 weeks. Above studies, PSH had bio-compatibility with human body, new bone formation ability and accelerate osteoblastic activity. So it would be the efficient bone substitute material with bio-active and biodegradable.

Improvement of the osteogenic potential of ErhBMP-2-/EGCG-coated biphasic calcium phosphate bone substitute: in vitro and in vivo activity

  • Hwang, Jae-ho;Oh, Seunghan;Kim, Sungtae
    • Journal of Periodontal and Implant Science
    • /
    • 제49권2호
    • /
    • pp.114-126
    • /
    • 2019
  • Purpose: The aim of this study was to evaluate the enhancement of osteogenic potential of biphasic calcium phosphate (BCP) bone substitute coated with Escherichia coli-derived recombinant human bone morphogenetic protein-2 (ErhBMP-2) and epigallocatechin-3-gallate (EGCG). Methods: The cell viability, differentiation, and mineralization of osteoblasts was tested with ErhBMP-2-/EGCG solution. Coated BCP surfaces were also investigated. Standardized, 6-mm diameter defects were created bilaterally on the maxillary sinus of 10 male New Zealand white rabbits. After removal of the bony windows and elevation of sinus membranes, ErhBMP-2-/EGCG-coated BCP was applied on one defect in the test group. BCP was applied on the other defect to form the control group. The animals were sacrificed at 4 or 8 weeks after surgery. Histologic and histometric analyses of the augmented graft and surrounding tissue were performed. Results: The 4-week and 8-week test groups showed more new bone (%) than the corresponding control groups (P<0.05). The 8-week test group showed more new bone (%) than the 4-week test group (P<0.05). Conclusions: ErhBMP-2-/EGCG-coated BCP was effective as a bone graft material, showing enhanced osteogenic potential and minimal side effects in a rabbit sinus augmentation model.

Octacalcium phosphate, a promising bone substitute material: a narrative review

  • Jooseong Kim;Sukyoung Kim;Inhwan Song
    • Journal of Yeungnam Medical Science
    • /
    • 제41권1호
    • /
    • pp.4-12
    • /
    • 2024
  • Biomaterials have been used to supplement and restore function and structure by replacing or restoring parts of damaged tissues and organs. In ancient times, the medical use of biomaterials was limited owing to infection during surgery and poor surgical techniques. However, in modern times, the medical applications of biomaterials are diversifying owing to great developments in material science and medical technology. In this paper, we introduce biomaterials, focusing on calcium phosphate ceramics, including octacalcium phosphate, which has recently attracted attention as a bone graft material.

Clinical effectiveness of combining platelet rich fibrin with alloplastic bone substitute for the management of combined endodontic periodontal lesion

  • Goyal, Lata
    • Restorative Dentistry and Endodontics
    • /
    • 제39권1호
    • /
    • pp.51-55
    • /
    • 2014
  • The term "endo-perio" lesion has been proposed to describe the destructive lesion resulting from inflammatory products found in varying degrees in both the periodontium and the pulpal tissues. In most of the cases, clinical symptoms disappear following successful endodontic therapy. However failure after conventional root canal treatment calls for surgical intervention. A 35 year old male patient with endo-perio lesion in right maxillary lateral incisor was treated with platelet rich fibrin (PRF) and alloplastic bone substitute after conventional endodontic therapy. At the end of 6 months there was gain in clinical attachment, increased radiographic bone fill and reduction in probing depth which was maintained till 18 month follow-up. Present case report aims to evaluate the efficacy of PRF and alloplastic bone substitute in the management of intrabony defect associated with endo-perio lesion in maxillary lateral incisor because the healing potential of PRF and bone graft has not been widely studied in endodontics. The use of PRF allows the clinician to optimize tissue remodelling, wound healing and angiogenesis by the local delivery of growth factors and proteins. The novel technique described here enables the clinician to be benefited from the full regenerative capacity of this autologous biologic material.

The effect of hard-type crosslinked hyaluronic acid with particulate bone substitute on bone regeneration: positive or negative?

  • Yun, Junseob;Lee, Jungwon;Kim, Sungtae;Koo, Ki-Tae;Seol, Yang-Jo;Lee, Yong-Moo
    • Journal of Periodontal and Implant Science
    • /
    • 제52권4호
    • /
    • pp.312-324
    • /
    • 2022
  • Purpose: The role of hard-type crosslinked hyaluronic acid (HA) with particulate bone substitutes in bone regeneration for combined inlay-onlay grafts has not been fully investigated. We aimed to evaluate the effect of hard-type crosslinked HA used with bone substitute in terms of new bone formation and space maintenance. Methods: A 15-mm-diameter round defect was formed in the calvaria of 30 New Zealand White rabbits. All animals were randomly assigned to 1 of 3 groups: the control group (spontaneous healing without material, n=10), the biphasic calcium phosphate (BCP) graft group (BCP, n=10), and the BCP graft with HA group (BCP/HA, n=10). The animals were evaluated 4 and 12 weeks after surgery. Half of the animals from each group were sacrificed at 4 and 12 weeks after surgery. Samples were evaluated using micro-computed tomography, histology, and histomorphometry. Results: The BCP group showed higher bone volume/tissue volume (BV/TV) values than the control and BCP/HA groups at both 4 and 12 weeks. The BCP and BCP/HA groups showed higher bone surface/tissue volume (BS/TV) values than the control group at both 4 and 12 weeks. The BCP group showed higher BS/TV values than the control and BCP/HA groups at both 4 and 12 weeks. No statistically significant difference in newly formed bone was found among the 3 groups at 4 weeks. The BCP group showed significantly higher new bone formation than the BCP/HA group at 12 weeks. Conclusions: Hard-type crosslinked HA did not show a positive effect on new bone formation and space maintenance. The negative effect of hard-type crosslinked HA may be due to the physical properties of HA that impede osteogenic potential.

Dentin Matrix Block의 치조골 복원 능력에 관한 임상적 연구 (Clinical Study on the Alveolar Bone Repair Capacity of Dentin Matrix Block)

  • 김경욱
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • 제35권1호
    • /
    • pp.55-59
    • /
    • 2013
  • In the oral and maxillofacial area, bone defects are created by various reasons and demand for bone grafts, while dental implant implantation has been increased consistently. To solve these problems, there has been development of autogenous tooth-bone graft material (AutoBT$^{(R)}$, Korea Tooth Bank Co., Korea), and we have collected ground reasons to substitute free autobone graft with this material in clinical use. This autogenous tooth-bone graft material is produced in powder type and block type. Block type is useful in esthetic reconstruction of the defect site and vertical and horizontal augmentation of alveolar bone because this type has high strength value, well maintained shape and is less absorbed. Therefore, the author of this study gained favorable result by grafting the block type autogenous tooth-bone graft material after dental implant implantation on the bone defects of the mandibular molar extraction site. Moreover, the author represents this case with literature review after confirming bone remodeling on the computed tomography image and by histological analysis.

탄산아파타이트로 된 인공골과 소뼈에서 유래한 무기질 골의 초기 골전도에 대한 연구 (A STUDY ABOUT EARLY OSTEOCONDUCTIVITY OF POROUS ALLOPLASTIC CARBONAPATITE AND ANORGANIC BOVINE XENOGRAFT IN CANINE MAIXLLIARY AUGMENTATION MODEL)

  • 김도균;조태형;송윤미;판휘;이수연;진임건;김인숙;홍국선;황순정
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • 제29권6호
    • /
    • pp.485-493
    • /
    • 2007
  • Introduction: Although several types of calcium-phosphate coumpound have been frequently applied to osseous defects at maxillofacial area for many years, there is a controversy about its efficiency on bone conductivity comprared to xenograft bone substitute. Alloplastic carbonapatite has been introduced to improve disadvantages of hydroxyapatite and to mimic natural bone containing carbon elements. However, a preclinical study about its efficiency of osteoconductivity has not been reported. This study was performed to evaluate the early osteoconductive potential of synthetic carbonapatite with multiple pores relative to anorganic bovine xenograft. Materials and methods: Total 5 beagle dogs were used for maxillary augmentation model. The control (anorganic bovine xenograft) and experimental groups (synthetic carbonapatite) were randomly distributed in the mouth split design. After bone graft, all animals were sacrificed 4 weeks after surgery. Histological specimens with Masson Trichrome staining were made and histomorphometrically analysed with image analyser. The statistical analysis was performed using paired t-test. Results: In both groups, all animals had no complications. The experimental group showed relatively much new bone formation around and along the bone substitutes, whereas it was clearly reduced in the control group. The ratios of new bone area to total area, to material area and to the residual area excluding materials were higher in the experimental group ($0.13{\pm}0.03,\;0.40{\pm}0.13,\;0.20{\pm}0.06$ respectively) than in the control group ($0.01{\pm}0.01,\;0.03{\pm}0.02,\;0.03{\pm}0.03$, respectively). And the differences between both groups were statistically significant (p<0.001, <0.01, <0.01, respectively), while the ratio of material area to total area in two groups was not significant. Conclusion: Carbonapatite showed a high osteoconductivity in the early stage of bone healing compared to bovine derived anorganic bone substitute. This study suggests that this bone materials can be applied as a reliable bone substitute in the clinical treatment.

치성 낭종 적출술후 사용된 HAP의 효과에 대한 임상적 방사선학적 연구 (A CLINCO-RADIOGRAPHIC STUDY ON EFFECT OF HAP USED AFTER ODONTOGENIC CYST ENUCLEATION)

  • 임재석;김성문;류재준;김희종;이상은;조민
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • 제12권3호
    • /
    • pp.57-62
    • /
    • 1990
  • Many alloplastic materials have been used as the bony substitute in large bony defects caused by fracture, periodontitis, & cyst, etc. Nowadays Hydroxyapatite(HAP) is the most usable material as the bony substitute. The reasonable properties of HAP are nontoxic, biocompatible to host tissues & have osteoconductivity. Other bioceramic materials are recommended as the bony substitute with high success rate. We have studied the clinical use of HAP as the bony substitute in the defected area caused by cyst. The reasonalbe & successful results are obtained. The results were as followed. 1. Better prognosis was obtained in the case of HAP & bone mixed graft than HAP graft only. And the best prognosis was obtained in the case of iliac bone graft. 2. Better prognosis was obtained in Mx. than in Mn. 3. It seems that the soft tissue ingrowth into the HAP granule play an important role in the success of the HAP graft. 4. Though the flap covering the HAP granules was perforated, the relative good prognosis was obtained by re-suturing the perforeated site.

  • PDF