• Title/Summary/Keyword: bone resorption factor

Search Result 157, Processing Time 0.023 seconds

The Effects of PDGF and LPS on the Viability of Human Periodontal Ligament Cells (PDGF와 LPS가 치주 인대 세포의 활성에 미치는 영향에 관한 연구)

  • Heo, Jeong;Lim, Jeong-Hyun;Kim, Sang-Cheol
    • The korean journal of orthodontics
    • /
    • v.28 no.1 s.66
    • /
    • pp.143-153
    • /
    • 1998
  • Platelet-derived growth factor(PDGF) and lipopolysaccharide(LPS) may be the important regualtors of bone metabolism Exogenous PDGF is recognized to have a stimulating effect on bone resorption in organ culture but to stimulate the formation of new bone ultimately. LPS is known to be a stimulating agent on the osteoclastic activity. The purpose of this study was to evaluate the effects and the interaction of PDGF and LPS on periodontal ligament(PDL) cells which have important roles in bone remodeling. Cultured human periodontal ligament cells were tented with various concentration or PDGF and/or LPS. The cellular viability was measured by Microtitration(MTT) assay according to the lapse time of culture. The obtained results were as follows: 1. The viability of PDL cells was not different from the con01 in 0.1ng/ml of PDGF, but was significantly increased to be over the level of control in 1ng/ml of PDGF at the second day of culture, and in 10ng/m1 of PDGF at the second and the third day of culture. 2. The cellular viability was decreased in $0.5{\mu}g/ml$ or $5{\mu}g/ml$ LPS at the third day of culture. 3. Incubation with both 1ng/ml or 10ng/ml of PDGF and $0.5{\mu}g/ml$ of $5{\mu}g/ml$ of LPS resulted in the increased cellular viability at the third day, which was greater than LPS only treated group. It was greater than even the control group in 10ng/m1 of PDGF. From the above findings, we could summarize that the admixture of PDGF and LPS could not less increase the viability of the human periodontal ligament cells than PDGF only.

  • PDF

Hypertonicity Down-regulates the $1{\alpha},25(OH)_2$ Vitamin $D_3$-induced Osteoclastogenesis Via the Modulation of RANKL Expression in Osteoblast

  • Jeong, Hyun-Joo;Yushun, Tian;Kim, Bo-Hye;Nam, Mi-Young;Lee, Hyun-A;Yoo, Yun-Jung;Seo, Jeong-Taeg;Shin, Dong-Min;Ohk, Seung-Ho;Lee, Syng-Ill
    • International Journal of Oral Biology
    • /
    • v.30 no.1
    • /
    • pp.23-30
    • /
    • 2005
  • Bone remodeling is a process controlled by the action of two major bone cells; the bone forming osteoblast and the bone resorbing osteoclast. In the process of osteoclastogenesis, stromal cells and osteoblast produce RANKL, OPG, and M-CSF, which in turn regulate the osteoclastogenesis. During the bone resorption by activated osteoclasts, extracellular $Ca^{2+}/{PO_4}^{2-}$ concentration and degraded organic materials goes up, providing the hypertonic microenvironment. In this study, we tested the effects of hypertonicity due to the degraded organic materials on osteoclastogenesis in co-culture system. It was examined the cellular response of osteoblastic cell in terms of osteoclastogenesis by applying the sucrose, and mannitol, as a substitute of degraded organic materials to co-culture system. Apart from the sucrose, mannitol, and NaCl was tested to be compared to the effect of organic osmotic particles. The addition of sucrose and mannitol (25, 50, 100, 150, or 200 mM) to co-culture medium inhibited the number of tartrate-resistant acid phosphatase (TRAP) positive multinucleated cells induced by 10 nM $1{\alpha},25(OH)_2vitaminD_3$ ($1{\alpha},25(OH)_2D_3$). However, NaCl did exert harmful effect upon the cells in this co-culture system, which is attributed to DNA damage in high concentration of NaCl. To further investigate the mechanism by which hypertonicity inhibits $1{\alpha},25(OH)_2D_3$-induced osteoclastogenesis, the mRNA expressions of receptor activator of nuclear factor (NF)-kB ligand (RANKL) and osteoprotegerin (OPG) were monitored by RT-PCR. In the presence of sucrose (50 mM), RANKL mRNA expression was decreased in a dose-dependent manner, while the change in OPG and M-CSF mRNA were not occurred in significantly. The RANKL mRNA expression was inhibited for 48 hours in the presence of sucrose (50 mM), but such a decrement recovered after 72 hours. However, there were no considerable changes in the expression of OPG and M-CSF mRNA. Conclusively, these findings strongly suggest that hypertonic stress down-regulates $1{\alpha},25(OH)_2D_3$-induced osteoclastogenesis via RANKL signal pathway in osteoblastic cell, and may playa pivotal role as a regulator that modulates osteoclastogenesis.

Effects of Sulraphane on Osteoclastogenesis in RAW 264.7 (RAW 264.7 세포에서 sulforaphane의 파골세포형성 저해효과)

  • Hwang, Joon-Ho;Yi, Mi-Ran;Kang, Chang-Hee;Bu, Hee-Jung
    • Journal of agriculture & life science
    • /
    • v.50 no.2
    • /
    • pp.151-160
    • /
    • 2016
  • Inflammatory cytokines play a major role in osteoclastogenesis, leading to the bone resorption that is frequently associated with osteoporosis. Sulforaphane, isolated from the Broccoli(Brassica oleracea var. italia) florets, inhibits the production of inflamatory cytokine. In the present study, we determined inhibitory effect of sulforaphane on Receptor activator of nuclear factor κB ligand(RANKL)-induced osteoclast formation. Sulforaphane inhibited the expression of osteoclast marker genes, such as tartrate-resistant acid phosphatase(TRAP), cathepsin K, matrix metalloproteinase 9(MMP-9), and calcitonin receptor in RANKL-induced RAW 264.7 macrophage. Also, sluforaphane inhibited the expression of osteoclast protein, such as TRAP, MMP-9, tumor necrosis factor receptor-associated factor 6(TRAF6) and transcription factor nuclease factor of activated T cells(NFAT)c1. Sulforaphane inhibited RANKL-induced activiation of nuclear factor kappaB(NF-kappaB) by suppression RANKL-mediated NF-kappaB transcriptional acitivation. We are confirmed that sulforaphane inhibits not only transcriptional activity of NF-kappaB but also expressions of the osteoclastogenesis factors(TRAP, cathepsin K, MMP-9, calcitonin, TRAF6) and trranscription factor NFATc1.

Comparison of Subchondral Fracture on Radiographs with MR Images in Evaluation of Osteonecrosis in LCP Patients (LCP 환아에서 골괴사의 평가방법으로 연골하 골절선과 자기공명영상의 비교)

  • Kim, Jin-Won;Park, Mee-Jung;Choi, Ho-Chul;Cho, Jae-Min;Ryoo, Jae-Wook;Jeong, Seong-Hoon;Kim, Dong-Hee;Lee, Gyung-Kyu;Na, Jae-Boem
    • Investigative Magnetic Resonance Imaging
    • /
    • v.13 no.2
    • /
    • pp.177-182
    • /
    • 2009
  • Purpose : To compare the subchondral fracture on plain radiography and MR image as a method for assessing osteonecrosis in Legg-Calve-Perthes(LCP) pateients. Materials and methods: We retrospetively reviewed 15 hip joint MR images and plain radiography which visualized subchondral fracture. With basis of the Salter-Thompson classification, extent of necrosis was graded group A to B, as follows; Group A = < 50%, B = > 50%. On PACS workstation, necrotic area of each MR image was measured to calculate the volume of necrotic portion: volume = necrotic area $\times$ slice thickness. Necrotic areas on MR images were graded group A to B and results were compared with that measured in Salter-Thompson classification. On follow up, bone resorption was measured and the extent was compared with subchondral fracture representing necrotic area and that on MR volume method respectively. Results : In 9 joints of 15 hip joints (60%), the degree of necrosis in Salter-Thompson classification on plain radiographs was different from that on MR volume method. Based on plain radiographs by Salter-Thompson classification, the degree of necrosis was overestimated in 6(67%) joints, and underestimated in 3(33%) joints compared with MR volume method. On follow up study, bone resorption was not correlated with necrotic extent of subchondral fracture and MR volume method. Conclusion : The extent of femoral head necrosis measured by subchondral fracture was different from that measured by MR and was not correlated with bone resorption on follow up. Therefore, usefulness of subchondral fracture as a prognostic factor may be limited.

  • PDF

The Effects of Bone Morphogenetic Protein and Epidermal Growth Factor on the Periodontal Tissue Regeneration (골형태형성단백질 및 상피성장인자가 치주조직 재생에 미치는 영향)

  • Cho, Seong-Hoon;Kwon, Young-Hyuk;Lee, Man-sup;Heer, Yeek
    • Journal of Periodontal and Implant Science
    • /
    • v.30 no.3
    • /
    • pp.505-527
    • /
    • 2000
  • The 3 beagle dogs aged over one and half years and weighed 14 to 16 Kg were utilized in this study. Horizontal furcation defects were induced around 3rd, and 4th premolars bilaterally. BMP-4 in conjunction with EGF and BMP-4 only were applied in the right and left premolars respectively. 1 animal was sacrificed at 2nd week, 4th week, and 8th week, after regenerative surgery respectively. Semi-thin sections using glass-knife were stained with hematoxylin- eosin and trichrome for light microscopic study. The results were as follows : 1 . The long junctional epithelial downgrowth was observed in both area applied with BMP-4 and with BMP-4 and EGF at 2nd week after the surgery. 2 . The extensive regeneration of new bone and cementum was appeared at 4th week and the maturation of bone was observed at 8th week in both area applied with BMP-4 and with BMP-4 and EGF. 3 . The root ankylosis and resorption was presented along the exposed root surface at the coronal 1/3 of defect in the BMP-4 applied site, but it was not shown in the site applied with BMP-4 in conjunction with EGF at the 4th week. At 8th week, the root ankylosis was apparently appeared in the BMP-4 and EGF applied site as well as in the BMP-4 applied site. 4 . The periodontal ligament tissue including Sharpey's fiber inserted into cementum and alveolar bone, was formed along the exposed root surface in the area applied with BMP-4 only, but in the site applied with BMP-4 and EGF, the collagen fiber running parallel to the root surface without Sharpey's fiber, was observed in the periodontal ligament space at 4th and 8th week. Within the above results, BMP-4 had the remarkable capability to regenerate the periodontal tissue and EGF had possibility to prevent from the root ankylosis. Therefore, growth factors including BMP-4 and EGF may have the strong possibility to be utilized in the clinical periodontal treatments.

  • PDF

Periodontal wound healing following reciprocal autologous root transplantation in class III furcation defects

  • Takeuchi, Naoshi;Shirakata, Yoshinori;Shinohara, Yukiya;Sena, Kotaro;Noguchi, Kazuyuki
    • Journal of Periodontal and Implant Science
    • /
    • v.47 no.6
    • /
    • pp.352-362
    • /
    • 2017
  • Purpose: Furcation involvement in the molars is difficult to treat, and has been recognized as a risk factor for tooth loss. Although periodontal regenerative therapies, including guided tissue regeneration and various types of bone grafts, have been applied to furcation defects, the effects of these treatments are limited, especially in large class III furcation defects. The purpose of this pilot study was to investigate the effect of reciprocal autologous root transplantation on periodontal wound healing and regeneration in class III furcation defects in dogs. Methods: Furcation defects (7 mm wide and 6 mm high) were surgically created after root separation of the unilateral third and fourth premolars in 4 dogs. Eight furcation defects were randomized to receive either reciprocal autologous root transplantation (test) or no further treatment (control). In the test group, the mesial and distal roots were transplanted into the distal and mesial extraction sockets, respectively. The animals were sacrificed 10 weeks after surgery for histologic evaluation. Results: The healing pattern in the control group was characterized by extensive collapse of the flap and limited periodontal regeneration. New bone formation in the test group ($3.56{\pm}0.57mm$) was significantly greater than in the control group ($0.62{\pm}0.21mm$). Dense collagen fibers inserting into the residual cementum on the transplanted root surfaces were observed in the test group. Slight ankylosis was observed in 2 of the 4 specimens in the test group on the mesiodistal sides where the root-planed surfaces faced the existing bone. Root resorption (RR) was detected in both the control and test groups. Conclusions: Within the limits of this study, it can be concluded that reciprocal autologous root transplantation was effective for bone regeneration in class III furcation defects in dogs. However, further studies are required to standardize the approach in order to prevent unwanted RR prior to clinical application.

Salivary soluble receptor activator of nuclear factor kappa B ligand/osteoprotegerin ratio in periodontal disease and health

  • Tabari, Zahra Alizadeh;Azadmehr, Abbas;Tabrizi, Mohammad Amir Alizadeh;Hamissi, Jalaloddin;Ghaedi, Fatemeh Baharak
    • Journal of Periodontal and Implant Science
    • /
    • v.43 no.5
    • /
    • pp.227-232
    • /
    • 2013
  • Purpose: The receptor activator of nuclear factor kappa B (RANK)/RANK ligand (RANKL)/osteoprotegerin (OPG) system plays a significant role in osteoclastogenesis, activation of osteoclasts, and regulation of bone resorption. This study aimed to evaluate the use of the salivary soluble RANKL (sRANKL)/OPG ratio as a diagnostic marker for periodontitis in nonsmokers. Methods: Twenty-five patients with chronic periodontitis and 25 individuals with a healthy periodontium were enrolled in this study. Samples containing 5 mL of unstimulated saliva were obtained from each subject. Salivary sRANKL and OPG concentrations were determined using a standard enzyme-linked immunosorbent assay. Statistical analysis was performed using SPSS ver. 18.0. Results: The levels of sRANKL and OPG were detectable in all of the samples. Positive relationships were found between the plaque index and clinical attachment level and both the salivary concentration of sRANKL and the salivary sRANKL/OPG ratio (P<0.05). The salivary concentration of sRANKL and the sRANKL/OPG ratio were significantly higher in the periodontitis group than in the healthy group (P=0.004 and P=0.001, respectively). In contrast, the OPG concentration showed no significant differences between the groups (P=0.455). Conclusions: These findings suggest that the salivary sRANKL/OPG ratio may be helpful in the screening and diagnosis of periodontitis. However, longitudinal studies with larger populations are needed to confirm these results.

PDTC Inhibits $TNF-{\alpha}-Induced$ Apoptosis in MC3T3E1 Cells

  • Chae, Han-Jung;Bae, Jee-Hyeon;Chae, Soo-Wan
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.7 no.4
    • /
    • pp.199-205
    • /
    • 2003
  • Osteoblasts are affected by TNF-${\alpha}$ overproduction by immune cells during inflammation. It has been suggested that functional $NF-{\kappa}B$ sites are involved in TNF-${\alpha}$-induced bone resorption. Thus, we explored the effect of pyrrolidine dithiocarbamate (PDTC), which potently blocks the activation of nuclear factor $(NF-{\kappa}B)$, on the induction of TNF-${\alpha}$-induced activation of JNK/SAPK, AP-1, cytochrome c, caspase and apoptosis in MC3T3E1 osteoblasts. Pretreatment of the cells with PDTC blocked TNF-${\alpha}$-induced $NF-{\kappa}B$ activation. TNF-${\alpha}$-induced activation of AP-1, another nuclear transcription factor, was suppressed by PDTC. The activation of c-Jun N-terminal kinase, implicated in the regulation of AP-1, was also down regulated by PDTC. TNF-${\alpha}$-induced apoptosis, release of cytochrome c and subsequent activation of caspase-3 were abolished by PDTC. TNF-${\alpha}$-induced apoptosis was partially blocked by Ac-DEVD-CHO, a caspase-3 inhibitor, suggesting that caspase-3 is involved in TNF-${\alpha}$-mediated signaling through $NF-{\kappa}B$ in MC3T3E1 osteoblasts. Thus, these results demonstrate that PDTC, has an inhibitory effect on TNF-${\alpha}$-mediated activation of JNK/SAPK, AP-1, cytochrome c release and subsequent caspase-3, leading to the inhibition of apoptosis. Our study may contribute to the treatment of TNF-${\alpha}$-associated immune and inflammatory diseases such as rheumatoid arthritis and periodontal diseases.

Transforming Growth Factor β1/Smad4 Signaling Affects Osteoclast Differentiation via Regulation of miR-155 Expression

  • Zhao, Hongying;Zhang, Jun;Shao, Haiyu;Liu, Jianwen;Jin, Mengran;Chen, Jinping;Huang, Yazeng
    • Molecules and Cells
    • /
    • v.40 no.3
    • /
    • pp.211-221
    • /
    • 2017
  • Transforming growth factor ${\beta}1$ $(TGF{\beta}1)/Smad4$ signaling plays a pivotal role in maintenance of the dynamic balance between bone formation and resorption. The microRNA miR-155 has been reported to exert a significant role in the differentiation of macrophage and dendritic cells. The goal of this study was to determine whether miR-155 regulates osteoclast differentiation through $TGF{\beta}1/Smad4$ signaling. Here, we present that $TGF{\beta}1$ elevated miR-155 levels during osteoclast differentiation through the stimulation of M-CSF and RANKL. Additionally, we found that silencing Smad4 attenuated the upregulation of miR-155 induced by $TGF{\beta}1$. The results of luciferase reporter experiments and ChIP assays demonstrated that $TGF{\beta}1$ promoted the binding of Smad4 to the miR-155 promoter at a site located in 454 bp from the transcription start site in vivo, further verifying that miR-155 is a transcriptional target of the $TGF{\beta}1/Smad4$ pathway. Subsequently, TRAP staining and qRT-PCR analysis revealed that silencing Smad4 impaired the $TGF{\beta}1$-mediated inhibition on osteoclast differentiation. Finally, we found that miR-155 may target SOCS1 and MITF to suppress osteoclast differentiation. Taken together, we provide the first evidence that $TGF{\beta}1/Smad4$ signaling affects osteoclast differentiation by regulation of miR-155 expression and the use of miR-155 as a potential therapeutic target for osteoclast-related diseases shows great promise.

Effect of Water Extract of Aloe in RANKL-induced Osteoclast Differentiation (파골세포 분화에 미치는 노회(蘆會) 추출물의 효과)

  • Lee, Jeong-Hugh;Lee, Myeung-Su;Chae, Soo-Uk;Kim, Ha-Young;Moon, Seo-Young;Jeon, Byung-Hoon;Cho, Hae-Joong
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.25 no.6
    • /
    • pp.1008-1013
    • /
    • 2011
  • Osteoporosis is the leading underlying cause of fractures, particularly in postmenopausal women, due to the loss of estrogen-mediated suppression of bone resorption. More than 50% of adults 50 years of age or older are estimated to have osteoporosis. Osteoclast which is main target for treatment of osteoporosis is originated from hematopoietic cell line. Aloe has been widely used in worldwide country as a coadjuvant medicine. Extracts of the leaves of Aloe have been used in condition to improve dermatologic problem such as seborrheic dermatitis, aphthous stomatitis, xerosis, lichen planus and has been known to exert anti-inflammatory, anti-oxidant and anti-tumor effects. However, despite the popularity of aloe as a plant food supplements, the evaluation of its efficacy as a possible therapeutic option for osteoporosis remains scarce. Thus, we evaluated the effect of Aloe on receptor activator of nuclear factor-${\kappa}B$ ligand (RANKL)-induced osteoclast differentiation. Here we found that Aloe significantly inhibited osteoclast differentiation induced by RANKL. Aloe suppressed the activation of p38 pathway and $NF{\kappa}B$ in bone marrow macrophages (BMMs) treated with RANKL. Also, Aloe significantly inhibited the mRNA expression of c-Fos, tartrate-resistant acid phosphatase (TRAP), osteoclast-associated receptor (OSCAR), nuclear factor of activated T cells (NFAT)c1 and cathepsin K in BMMs treated with RANKL. Particularly, Aloe greatly inhibited the protein expression of c-fos and NFATc1. Taken together, our results suggested that Aloe may be useful tool for treatment of osteoporosis by inhibition of osteoclast differentiation.