• Title/Summary/Keyword: bone repair

Search Result 318, Processing Time 0.025 seconds

FACTORS INFLUENCING TO REGENERATION OF THE ALVEOLAR BONE IN THE SUPRAALVEOLAR DEFECTS IN DOGS;I : EFFECT OF THE DECALCIFIED FREEZE-DRIED BONE ALLOGRAFT (성견 수평골 소실시 치조골 재생에 영향을 주는 인자;I : 냉동 탈회 건조골 동종이식의 효과)

  • Kim, Chong-Kwan;Chai, Jung-Kiu;Cho, Kyoo-Sung;Choi, Seong-Ho;Jung, Hyun-Cheol;Moon, Ik-Sang
    • Journal of Periodontal and Implant Science
    • /
    • v.23 no.3
    • /
    • pp.374-390
    • /
    • 1993
  • Regeneration of periodontal tissue after a loss of attachment due to disease or trauma repesents an important issue in dentistry, and various bone graft materials have been used to regenerated lost periodontal tissue and restore proper fuctions. Among those, allografts have been extensively researched and widely used clinically, since they are known to possess an excellent osteoinduction capability and result in proper topography of alveolar bone. Regeneration of periodontal tissue in supraalveolar defects may be technically difficult. However, a large amount of regeneration has been observed by complete tissue coverage of involved teeth. In this study, supraalveolar defects in adult dogs were treated with periodontal surgery, decalcified freez-dried bone allograft, complete tissue coverage was attained, and effects on repair and regeneration of alveolar bone, cementum and periodontal ligament were studied. Exposure of premolar furcation of adult dogs was attained by removing marginal alveolar bone down to 5mm from CEJ, and root surfaces were planed with curettes. On the left side, defects were treated without any allograft(Control Group). On the right side, a DFDB was used(Experimental Group). In all groups, flaps were coronally positioned and sutured, completely submerging the treated defects. At two weeks, the crown were exposed 2-3mm. Healing progresses were histologically observed after eight weeks and the results were as follows : 1. Distance from CEJ to AJE was : $2.82{\pm}0.66mm$ in the control group, $1.71{\pm}0.51mm$ in experimental group, with significant differences between groups.(P<0.01) 2. Periodontal repair was : $2.18{\pm}0.66mm$ in the control group, $3.29{\pm}0.51mm$ in experimental group, with significant differences between groups.(P<0.01) 3. Connective tissue repair was : $1.43{\pm}0.52mm$ in the control group, $0.76{\pm}0.47mm$ in experimental group, with significant differences between groups.(P<0.01) Orientation of connective tissue fibers in relation to root surfaces was : mostly parallel in the control group, vertical or parallel or irregular in experimental group. 4. The amount of cementum formation was : $1.66{\pm}0.58mm$ in the control group, $2.86{\pm}0.66mm$ in experimental group, with significant differences between groups. 5. The amount of alveolar bone formation was : $0.76{\pm}0.72mm$ in the control group, $2.53{\pm}0.56mm$ in experimental group, with significant differences between groups.(P<0.01)

  • PDF

Clinical Features and Management of a Median Cleft Lip

  • Koh, Kyung S.;Kim, Do Yeon;Oh, Tae Suk
    • Archives of Plastic Surgery
    • /
    • v.43 no.3
    • /
    • pp.242-247
    • /
    • 2016
  • Background Median cleft lip is a rare anomaly consisting of a midline vertical cleft through the upper lip. It can also involve the premaxillary bone, the nasal septum, and the central nervous system. In our current report, we present the clinical features of 6 patients with a median cleft lip and their surgical management according to the accompanying anomalies. Methods From December 2010 to January 2014, 6 patients with a median cleft lip were reviewed. Five of these cases underwent surgical correction; alveolar bone grafting was performed in a patient with a median alveolar cleft. The surgical technique included inverted-U excision of the upper lip and repair of the orbicularis oris muscle. The mean follow-up period was 20.4 months (range, 7.4-44.0 months). Results The study patients presented various anomalous features. Five patients received surgical correction, 4 with repair of the median cleft lip, and one with iliac bone grafting for median alveolar cleft. A patient with basal sphenoethmoidal meningocele was managed with transoral endoscopic surgery for repair of the meningocele. Successful surgical repair was achieved in all cases with no postoperative complications. Conclusions Relatively mild forms of median cleft lip can be corrected with inverted-U excision with good aesthetic outcomes. In addition, there is a broad spectrum of clinical features and various anomalies, such as nasal deformity, alveolar cleft, and short upper frenulum, which require close evaluation. The timing of the operation should be decided considering the presence of other anomalies that can threaten patient survival.

Usefulness of Inferior Turbinate Bone-Periosteal-Mucosal Composite Free Graft for Cerebrospinal Fluid Leakage (하비갑개 골-골막-점막 복합이식을 이용한 뇌척수액 유출 복원술)

  • Baek, Kwangha;Kim, Jihyung;Moon, Youngmin;Kim, Chang-Hoon;Yoon, Joo-Heon;Cho, Hyung-Ju
    • Journal of Rhinology
    • /
    • v.25 no.2
    • /
    • pp.123-129
    • /
    • 2018
  • Background and Objectives: Endoscopic repair of cerebrospinal fluid (CSF) leak can avoid morbidity of open approaches and has shown a favorable success rate. Free mucosal graft is a good method, and multi-layered repair is more favorable. The inferior turbinate has been commonly utilized for the free mucosal graft, but we newly designed it as a bone-periosteal-mucosal composite graft for multilayered reconstruction. Subjects and Method: Four subjects with a skull base defect were treated with this method. The inferior turbinate was partially resected including the conchal bone and was trimmed according to defect size. Both bony parts and periosteum were preserved on the basolateral side of the mucosa as a composite graft. The graft was applied to the defect site using an overlay technique. Results: All cases were successfully repaired without any complications. Three of them had a defect size greater than 10-12 mm, and the graft stably repaired the CSF leakage. Conclusion: Endoscopic repair of CSF leakage using inferior turbinate composite graft is a simple and easy method and would be favorable for defect sizes greater than 10 mm.

Comparative preclinical assessment of the use of dehydrated human amnion/chorion membrane to repair perforated sinus membranes

  • Chang, Yun-Young;Kim, Su-Hwan;Goh, Mi-Seon;Yun, Jeong-Ho
    • Journal of Periodontal and Implant Science
    • /
    • v.49 no.5
    • /
    • pp.330-343
    • /
    • 2019
  • Purpose: The aim of this study was to evaluate the use of dehydrated human amnion/chorion membrane (dHACM) to repair perforated sinus membranes in rabbits. Methods: Bilateral surgical windows (7.5-mm diameter) were prepared on the nasal bones of 14 rabbits. Standardized circular perforations (5-mm diameter) were made in the sinus membrane by manipulating implant twist drills. The perforated sinus membranes were repaired using dHACM or a resorbable collagen membrane (CM). The negative control (NC) group did not undergo perforated sinus membrane repair, while the positive control (PC) group underwent sinus augmentation without perforations. The same amount of deproteinized porcine bone mineral was grafted in all 4 groups. After 6 weeks, micro-computed tomography (micro-CT) and histomorphometric evaluations were conducted. Results: The micro-CT analysis revealed that the total augmented volume was not significantly different among the groups. In the dHACM group, newly formed bone filled the augmented area with remaining biomaterials; however, non-ciliated flat epithelium and inflammatory cells were observed on the healed sinus membrane. Histometric analysis showed that the percentage of newly formed bone area in the dHACM group did not differ significantly from that in the CM group. The dHACM group showed a significantly higher percentage of newly formed bone area than the NC group, but there was no significant difference between the dHACM and PC groups. Conclusions: dHACM could be a feasible solution for repairing sinus membrane perforations that occur during sinus floor augmentation.

FORMATION OF EXTRACELLULAR MATRIX COMPONENTS DURING DEVELOPMENT AND REPAIR OF PERFORATION OF THE RAT DENTIN AND PULP (흰쥐 대구치의 치수강 노출 후 치유 및 형성과정에서 치수와 상아질 기질내의 교원질과 당단백의 분포에 관한 면역조직화학적 연구)

  • Kim, Byung-Wooh;Min, Byung-Soon
    • Restorative Dentistry and Endodontics
    • /
    • v.21 no.1
    • /
    • pp.35-53
    • /
    • 1996
  • The development and repair requires the formation of new tissues comprised of various extracellular matrix components. The present study investigated the formation and distribution of the major ECM components such as type I collagen, type III collagen, fibronection, bone sialoprotein, and osteonection during development and repair. For developing observation. Sprague-Dawley rats weighing $27{\pm}1gm$ were sacrificed. For repair observation, Sprague-Dawley rats weighing $110{\pm}5gm$ were used. The pulp perforation were prepared on mesial surface of the maxillary first molar by using 1/2round bur. At 5 days after perforation, rats were sacrificed by perfusion with 3 % paroformaldehyde. The maxillary first molar region were cut, demineralized, dehydrated and embedded in paraffin. Immunostaining the ECM components was achieved by the avidin-biotin complex method. The results as follows : 1. Bright immunoreaction for fibronectin was present in the basement membrane at the inner epithelial-mesenchymal interface, especially concentrated in the blood vessel walls, cell membrane of odontoblasts, and initial predentin. 2. Type I and III collagen was observed in the newly formed pulp tissue, predentin, and its intensity increased as more of these components during repair. 3. Strong immunostaining for bone sialoprotein and osteonectin was found in dentin while no or weaker staining was observed loose connective tissue of the pulp. 4. These results suggest that develpment and repair is achieved through a series of cell differentiation and attachment by the specific ECM components.

  • PDF

Long Bone Fractures in Raptors: 28 cases (2004-2007)

  • Yoon, Hun-Young;Fox, Derek B.;Jeong, Soon-Wuk
    • Journal of Veterinary Clinics
    • /
    • v.25 no.3
    • /
    • pp.215-217
    • /
    • 2008
  • Medical records from the Veterinary Medical Teaching Hospital of the University of Missouri-Columbia from 2004 to 2007 were available for 28 raptors that underwent long bone fracture repair. There were 14 owls, 10 hawks, 2 vultures, 1 eagle, and 1 falcon. Mean body weight was 780 g (ranged from 150 to 1400 g) for 14 owls; 650 g (ranged from 150 to 1270 g) for 10 hawks; 1760 g (ranged from 1520 to 2000 g) for 2 vultures; 5000 g for 1 eagle; and 130 g for 1 falcon. Of all 28 fracture cases, 11 cases (39%) and 1 case (3%) were related to hit-by-car and shooting respectively. Physical examination revealed dehydration in 18 raptors (64%) and lethargy in 12 raptors (42%). Forty one long bone fractures were included in 28 cases. The radiographs revealed 13 ulnar fractures (32%), 12 humeral fractures (30%), 10 radial fractures (25%), 4 tibiotarsal fractures (9%), 1 femoral fracture (2%), and 1 fibular fracture (2%). External skeletal fixation using polymethylmethacrylate (PMMA) combined with intramedullary fixation was used in 19 long bone fractures (46%). Intramedullary fixation using intramedullary Kirschner pin was used in 16 long bone fractures (39%). No surgical treatment was performed in 6 long bone fractures (15%). This study reported that many of raptors presented dehydration and lethargy when admitted for treatment. Therefore, proper hydration and nutrition are critical pre-surgical requirements. In addition, combination of internal fixation and external skeletal fixation using PMMA might be better option to treat raptors with comminuted fracture that results from mostly trauma of hit-by-car.

Performance analysis of bone scaffolds with carbon nanotubes, barium titanate particles, hydroxyapatite and polycaprolactone

  • Osfooria, Ali;Selahi, Ehsan
    • Biomaterials and Biomechanics in Bioengineering
    • /
    • v.4 no.1
    • /
    • pp.33-44
    • /
    • 2019
  • This paper presents a novel structural composition for artificial bone scaffolds with an appropriate biocompatibility and biodegradability capability. To achieve this aim, carbon nanotubes, due to their prominent mechanical properties, high biocompatibility with the body and its structural similarities with the natural bone structure are selected in component of the artificial bone structure. Also, according to the piezoelectric properties of natural bone tissue, the barium titanate, which is one of the biocompatible material with body and has piezoelectric property, is used to create self-healing ability. Furthermore, due to the fact that, most of the bone tissue is consists of hydroxyapatite, this material is also added to the artificial bone structure. Finally, polycaprolactone is used in synthetic bone composition as a proper substrate for bone growth and repair. To demonstrate, performance of the presented composition, the mechanical behaviour of the bone scaffold is simulated using ANSYS Workbench software and three dimensional finite element modelling. The obtained results are compared with mechanical behaviour of the natural bone and the previous bone scaffold compositions. The results indicated that, the modulus of elasticity, strength and toughness of the proposed composition of bone scaffold is very close to the natural bone behaviour with respect to the previous bone scaffold compositions and this composition can be employed as an appropriate replacement for bone implants.

A HISTOLOGIC STUDY OF INITIAL CHANCE AND REPAIR OF TOOTH AND PERIODONTAL TISSUE IN EXTRUSION OF YOUNG ADULT DOGS (유성견 소구치 정출시 치아 및 치주 조직의 초기 조직학적 변화 및 재생에 관한 연구)

  • Yoon, Byung-sun;Cha, Kyung-Suk;Lee, Jin-Woo
    • The korean journal of orthodontics
    • /
    • v.28 no.3 s.68
    • /
    • pp.419-429
    • /
    • 1998
  • This study was carried out in order to study early histologic changes and repair reaction appling to extrusive force for 3rd premolar of adult dogs. After 1 week of extrusive force with elastic chain, one of dogs was sacrified and after 3 weeks retention period, another dog was sacrified. The paraffin sections of samples were stained with Hematoxylin - Eosin and Masson's Trichrome and were examed by light microscopy . The obtained results as follows 1. In Hematoxylin - Eosin and Masson Trichrome stain of control group , the periodontal ligament width was constant from apical third to cervical third of the root and periodontal fiber arrangement was horizontal or oblique in cervical third. oblique in middle third, oblique in apical third of root. in alveolar bone, smooth appearance was shown 2. In Group 1, all periodontal fiber arrangement was oblique toward tooth, and the periodontal ligament width increased Partially PDL was ruptured in apex. In MT stain, immature bone formation was seen at alveolar crest area. Active bone formation was observed along the one side of alveolus, and apical portion of pulp was involved with blood vessel rupture , vacuolization of pulp tissue and hyperemia 3. In Group 2, most periodontal ligament arrangement and PDL width was repaired and fiber density increased. In MT stain, mineralization of immature bone on the alveolar crest was progressed. In pulp, vacuole and hyperemia was diminished and fibrotic change was diminished 4. After 3 week periodontal ligament has more repair ability than pulp tissue. pulp was involved with vacuolization and fibrosis, so it takes more time for repair.

  • PDF

Biomechanical Test for Repair Technique of Full-thickness Rotator Cuff Tear

  • Lim, Chae-Ouk;Park, Kyoung-Jin
    • Clinics in Shoulder and Elbow
    • /
    • v.19 no.1
    • /
    • pp.51-58
    • /
    • 2016
  • The arthroscopic rotator cuff repair is now considered a mainstream technique with highly satisfactory clinical results. However, concerns remain regarding healing failures for large and massive tears and high revision rate. In recent decades, various repair strategies and construct configurations have been developed for rotator cuff repair with the understanding that many factors contribute to the structural integrity of the repaired construct. The focus of biomechanical test in arthroscopic repair has been on increasing fixation strength and restoration of the footprint contact characteristics to provide early rehabilitation and improve healing. These include repaired rotator cuff tendon-footprint motion, increased tendon-footprint contact area and pressure, and tissue quality of tendon and bone. Recent studies have shown that a transosseous tunnel technique provides improved contact area and pressure between rotator cuff tendon and insertion footprint, and the technique of using double rows of suture anchors to recreate the native footprint attachment has been recently described. The transosseous equivalent suture bridge technique has the highest contact pressure and fixation force. In this review, the biomechanical tests about repair techniques of rotator cuff tear will be reviewed and discussed.