• Title/Summary/Keyword: bone morphogenesis

Search Result 25, Processing Time 0.032 seconds

Bone response around immediately placed titanium implant in the extraction socket of diabetic and insulin-treated rat maxilla (인슐린으로 조절되는 당뇨쥐 상악에서 발치 후 즉시 임플란트 주변에서 골형성)

  • Kim, Dae-Won;Heo, Hyun-A;Lim, Sang-Gyu;Lee, Won;Kim, Young-Sil;Pyo, Sung-Woon
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.37 no.1
    • /
    • pp.30-35
    • /
    • 2011
  • Introduction: Dental implants are used routinely with high success rates in generally healthy individuals. By contrast, their use in patients with diabetes mellitus is controversial because altered bone healing around implants has been reported. This study examined the bone healing response around titanium implants placed immediately in rats with controlled and uncontrolled diabetes. Materials and Methods: Twenty rats were divided into the control, insulin-treated and diabetic groups. The rats received streptozotocin (60 mg/kg) to induce diabetes; animals in the insulin-treated group also received three units of subcutaneous slow-release insulin. A titanium implant ($1.2{\times}3\;mm$) was placed in the extraction socket of the maxillary first molar and bone block was harvested at 1, 2 and 4 weeks. Results: Bone formation around the implants was consistently (from 1 to 4 week post-implantation) slower for the diabetic group than the control and insulin-treated group. Bone morphogenesis in the diabetic rats was characterized by fragmented bone tissues and extensive soft tissue intervention. Conclusion: The immediate placement of titanium implants in the maxilla of diabetic rats led to an unwanted bone healing response. These results suggest that immediate implant insertion in patients with poorly controlled diabetes might be contraindicated.

Gene expression profile in mesenchymal stem cells derived from dental tissues and bone marrow

  • Kim, Su-Hwan;Kim, Young-Sung;Lee, Su-Yeon;Kim, Kyoung-Hwa;Lee, Yong-Moo;Kim, Won-Kyung;Lee, Young-Kyoo
    • Journal of Periodontal and Implant Science
    • /
    • v.41 no.4
    • /
    • pp.192-200
    • /
    • 2011
  • Purpose: The aim of this study is to compare the gene expression profile in mesenchymal stem cells derived from dental tissues and bone marrow for characterization of dental stem cells. Methods: We employed GeneChip analysis to the expression levels of approximately 32,321 kinds of transcripts in 5 samples of bone-marrow-derived mesenchymal stem cells (BMSCs) (n=1), periodontal ligament stem cells (PDLSCs) (n=2), and dental pulp stem cells (DPSCs) (n=2). Each cell was sorted by a FACS Vantage Sorter using immunocytochemical staining of the early mesenchymal stem cell surface marker STRO-1 before the microarray analysis. Results: We identified 379 up-regulated and 133 down-regulated transcripts in BMSCs, 68 up-regulated and 64 down-regulated transcripts in PDLSCs, and 218 up-regulated and 231 down-regulated transcripts in DPSCs. In addition, anatomical structure development and anatomical structure morphogenesis gene ontology (GO) terms were over-represented in all three different mesenchymal stem cells and GO terms related to blood vessels, and neurons were over-represented only in DPSCs. Conclusions: This study demonstrated the genome-wide gene expression patterns of STRO-$1^+$ mesenchymal stem cells derived from dental tissues and bone marrow. The differences among the expression profiles of BMSCs, PDLSCs, and DPSCs were shown, and 999 candidate genes were found to be definitely up- or down-regulated. In addition, GOstat analyses of regulated gene products provided over-represented GO classes. These data provide a first step for discovering molecules key to the characteristics of dental stem cells.

BMP Expression by Human Cementum-Derived Cells in vitro

  • Ko, Hyun-Jung;Grzesik, Wojciech J
    • International Journal of Oral Biology
    • /
    • v.30 no.3
    • /
    • pp.99-103
    • /
    • 2005
  • Bone morphogenetic proteins (BMPs), members of a large group of TGF-beta family, are important molecular regulators of morphogenesis of numerous tissues and organs, including bones and teeth. Most BMPs are capable of inducing bone formation in vivo and therefore are of considerable clinical interest for regenerating mineralized tissues. Recently, we have developed a method to culture cells from human cementum (human cementum-derived cells, HCDCs). HCDCs, when attached to synthetic hydroxyapatite/tricalcium phosphate (HA/TCP) ceramic and transplanted into immunodeficient mice, formed histologically identifiable cementum-like tissue. Since it is unclear to what extent BMPs are involved in cementogenesis, the aim of this study was to establish which BMPs are expressed by cementogenic HCDCs and whether the expression of BMPs is related to the degree of cellular differentiation in vitro. HCDCs were maintained in growth medium (DMEM/F12 supplemented with 10% FBS) until confluent (proliferation stage). Upon reaching confluence, cells were incubated in the differentiation medium (DMEM/F12 medium containing 10% FBS and 50 mg/ml ascorbic acid) for 14 days (differentiation stage). Next, HCDCs were incubated in mineralization medium (DMEM/F12, 50 mg/ml ascorbic acid, 2.5 mg/ml of ITS (insulin-transferrinselenium), 5 mM beta-glycerophosphate and $10^{-8}M$ dexamethasone) for another 14 days (mineralization stage). At the end of each differentiation stage, total RNA was isolated and evaluated for BMPs (2 through 8) expression by employing real time RT-PCR. HCDCs expressed most of BMPs examined except BMP-7 and BMP-8. Furthermore, on average, the highest levels of BMPs were expressed at the earlier differentiation stage, prior to the initiation of mineralization in vitro. These results indicate that several BMPs are expressed during cementoblastic differentiation and suggest that BMPs may be involved in the homeostasis of human cementum.

THE EFFECT OF FGF-MEDIATED FGFR SIGNALING ON THE EARLY MORPHOGENESIS AND MAINTENANCE OF THE CRANIAL SUTURE (FGF-mediated FGFR signaling이 두개봉합부의 초기형태발생 및 유지기전에 미치는 영향)

  • Sue, Kyung-Hwan;Park, Mi-Hyun;Ryoo, Hyun-Mo;Nam, Soon-Hyeun;Kim, Young-Jin;Kim, Hyun-Jung
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.26 no.4
    • /
    • pp.652-663
    • /
    • 1999
  • Craniosynostosis, the premature fusion of cranial sutures, presumably involves disturbance of the interactions between different tissues within the cranial sutures. Interestingly, point mutaions in the genes encoding for the fibroblast growth factor receptors(FGFRs), especially FGFR2, cause various types of human craniosynostosis syndromes. To elucidate the function of these genes in the early morphogenesis of mouse cranial sutures, we first analyzed by in situ hybridization the expression of FGFR2(BEK) and osteopontin, an early marker of osteogenic differentiation, in the sagittal suture of calvaria during embryonic(E15-E18) and postnatal stage(P1-P3). FGFR2(BEK) was intensely expressed in the osteogenic fronts, whose cells undergo differentiation into osteoprogenitor cells that ultimately lay down the bone matrix. Osteopontin was expressed throughout the parietal bones excluding the osteogenic fronts, the periphery of the parietal bones. To further examine the role of FGF-mediated FGFR signaling in cranial suture, we did in vitro experiments in E15.5 mouse calvarial explants. Interestingly, implantation of FGF2 soaked beads onto both the osteogenic fronts and mid-mesenchyme of sagittal suture after 36 hours organ culture resulted in the increase of the tissue thickness and cell number around FGF2 beads, moreover FGF4-soaked beads implanted onto the osteogenic fronts stimulated suture closure due to an accelerated bone growth, compared to FGF4 beads placed onto mid-mesenchyme of sagittal suture and BSA control beads. In addition FGF2 induced the ectopic expression of osteopontin and Msx1 genes. Taken together, these data indicate that FGF-mediated FGFR signaling has a important role in regulating the cranial bone growth and maintenance of cranial suture, and suggest that FGF-mediated FGFR signaling is involved in regulating the balance between the cell proliferation and differentiation through inducing the expression of osteopontin and Msx1 genes.

  • PDF

The Immunohistochemical Expression of Collagens and the Morphogenesis in the Developing Mandible of Human Embryos and Fetuses (배자와 태아에서 하악골의 형태발생 및 교원질 발현에 관한 면역조직화학적 연구)

  • Kook, Yoon-Ah;Kim, Sang-Cheol;Kim, Eun-Cheol;Kim, Oh-Hwan;Kim, Jong-Ghee
    • The korean journal of orthodontics
    • /
    • v.26 no.2 s.55
    • /
    • pp.187-196
    • /
    • 1996
  • Underlying malocclusions and dentofacial deformities are often related to variations in the craniofacial development. Type I and type II collagens are considered the major collagens of bone and cartilage respectively. Monitoring the patterns of those protein expressions during development will Provide a basis for the understanding of normal and abnormal growths. This study was undertaken to investigate the morphogenetic changes and the expression patterns of type I and II collagen proteins involved in the developing mandible of human embryos and fetuses. 50 embryos and fetuses were studied with Hematoxylin and Eosin, Alcian, blue-PAS, Masson Trichrome, md Immunohistochemical stains. The results were as follows : 1. A 13.5 mm embryo showed the stomatodeum with dental lamina, maxillary and mandibular processes. Meckel's cartilage appeared in the mandibular arch of a 20.5 mm embryo. New bone formation was bilaterally initiated at the outer side of middle portion of Meckel's cartilage of 22-38 mm embryos. 2. Meckel'cartilage was resorbed at the 15th week fetus. The endochondral ossification was observed where there was direct replacement of cartilage by bone. Meckel'cartilage disappeared and membraneous ossification were observed at the 25th week. 3. Before the appearance of Meckel's cartilage, the expression of type I collagen was moderate at the odontogenic epithelium of maxillary & mandibular process, but mild for the expression of type II collagen. 4. During the appearance of Meckel's cartilage and new bone formation, the immunoactivity of type II collagen was more expressed than type I collagen at the Meckel's cartilage and new bone. 5. During intrarmembranous bone formation, the expression of type II collagen was rare in the bony trabeculae. There was a switch for the expression of collagens from type II to type I during the appearance of Meckel's cartilage.

  • PDF

THE ROLE OF TRANSCRIPTION FACTOR MSX2 AND DLX5 IN CALVARIAL BONE AND SUTURE DEVELOPMENT (두개골 및 두개봉합부 초기발육과정에서의 전사조절인자인 Msx2와 Dlx5의 역할)

  • Song, Min-Ho;Park, Mi-Hyun;Nam, Soon-Hyeun;Kim, Young-Jin;Ryoo, Hyun-Mo;Kim, Hyun-Jung
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.30 no.3
    • /
    • pp.391-405
    • /
    • 2003
  • Craniosynostosis, known as a premature fusion of cranial sutures, is a developmental disorder characterized by precocious differentiation and mineralization of osteoblasts in the calvarial sutures. Recent genetic studies have demonstrated that mutation in the homeobox gene Msx2 causes Boston-type human craniosynostosis. Additionally, the phenotype of Dlx5 homozygote mutant mouse presents craniofacial abnormalities including a delayed ossification of calvarial bone. Furthermore transcription of osteocalcin, a mature osteoblast marker, is reciprocally regulated by the homeodomain proteins Msx2 and Dlx5. These facts suggest important roles of osteocalcin, Msx2 and Dlx5 genes in the calvarial bone growth and suture morphogenesis. To elucidate the function of these molecules in the early morphogenesis of mouse cranial sutures, we have first analyzed by in situ hybridization the expression of osteocalcin, Msx2 and Dlx5 genes in the developing parietal bone and sagittal suture of mouse calvaria during the embryonic (E15-E18) stage. Osteocalcin mRNA was found in the periosteum of parietal bones from E15, and gradually more highly expressed with aging. Msx2 mRNA was intensely expressed in the sutural mesenchyme, osteogenic fronts and mildly expressed in the dura mater during the embryonic stage. Dlx5 mRNA was intensely expressed osteogenic fronts and the periostem of parietal bones. To further examine the upstream signaling molecules of transcription factor Msx2 and Dlx5, we have done in vitro experiments in E15.5 mouse calvarial explants. Interestingly, implantation of BMP2-, BMP4-soaked beads onto the osteogenic fronts after 48 hours organ culture induced etopic expressions of Msx2 and Dlx5 genes. On the other hand, overexpression of $TGF{\beta}1$, GDF-6, -7, FGF-2, -4 and Shh did not induce the expression of Msx2 and Dlx5. Taken together. these data indicate that transcription factor Msx2 and Dlx5 play critical roles in the calvarial bone and suture development, and that BMP siganling is involved in the osteogenesis of calvarial bones and the maintenance of cranial sutures through regulating these two transcriotpn factors. Furthermore, different expression patterns between Msx2 and Dlx5 suggest their specific functions in the osteoblast differentiation.

  • PDF

Smad4 Mediated TGF-β/BMP Signaling in Tooth Formation Using Smad4 Conditional Knockout Mouse (치아 발생과정에서 Smad4의 역할)

  • Yoon, Chi-Young;Baek, Jin-A;Cho, Eui-Sic;Ko, Seung-O
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.35 no.2
    • /
    • pp.73-81
    • /
    • 2013
  • Purpose: Smad4 is a central mediator for transforming growth factor-${\beta}$/bone morphogenetic protein ($TGF-{\beta}/BMP$) signals, which are involved in regulating cranial neural crest cell formation, migration, proliferation, and fate determination. Accumulated evidences indicate that $TGF-{\beta}/BMP$ signaling plays key roles in the early tooth morphogenesis. However, their roles in the late tooth formation, such as cellular differentiation and matrix formation are not clearly understood. The objective of this study is to understand the roles of Smad4 in vivo during enamel and dentin formation through tissue-specific inactivation of Smad4. Methods: We generated and analyzed mice with dental epithelium-specific inactivation of the Smad4 gene (K14-Cre:$Smad4^{fl/fl}$) and dental mesenchyme-specific inactivation of Smad4 gene (Osr2Ires-Cre:$Smad4^{fl/fl}$). Results: In the tooth germs of K14-Cre:$Smad4^{fl/fl}$, ameloblast differentiation was not detectable in inner enamel epithelial cells, however, dentin-like structure was formed in dental mesenchymal cells. In the tooth germs of Osr2Ires-Cre:$Smad4^{fl/fl}$ mice, ameloblasts were normally differentiated from inner enamel epithelial cells. Interestingly, we found that bone-like structures, with cellular inclusion, were formed in the dentin region of Osr2Ires-Cre:$Smad4^{fl/fl}$ mice. Conclusion: Taken together, our study demonstrates that Smad4 plays a crucial role in regulating ameloblast and odontoblast differentiation, as well as in regulating epithelial-mesenchymal interactions during tooth development.

Differentiation potential of canine mesenchymal stem cells on hydrogel scaffold-based three-dimensional environment (하이드로젤 지지체 기반 3차원 환경에서 개 간엽줄기세포의 분화능 분석)

  • Gu, Na-Yeon;Park, Mi Jeong;Lee, Jienny;Byeon, Jeong Su;Jeong, Da-Un;Cho, In-Soo;Cha, Sang-Ho
    • Korean Journal of Veterinary Research
    • /
    • v.58 no.4
    • /
    • pp.211-217
    • /
    • 2018
  • Mesenchymal stem cells (MSCs) are useful candidates for tissue engineering and cell therapy. Physiological cell environment not only connects cells to each other, but also connects cells to the extracellular matrix that provide mechanical support, thus exposing the entire cell surface and activating signaling pathways. Hydrogel is a polymeric material that swells in water and maintains a distinct 3-dimensional (3D) network structure by cross linking. In this study, we investigated the optimized cellular function for canine adipose tissue-derived MSCs (cAD-MSCs) using hydrogel. We observed that the expression levels of Ki67 and proliferating cell nuclear antigen, which are involved in cell proliferation and stemness, were increased in transwell-hydrogel (3D-TN) compared to the transwell-normal (TN). Also, transforming growth factor-${\beta}1$ and SOX9, which are typical bone morphogenesis-inducing factors, were increased in 3D-TN compared to the TN. Collagen type II alpha 1, which is a chondrocyte-specific marker, was increased in 3D-TN compared to the TN. Osteocalcin, which is a osteocyte-specific marker, was increased in 3D-TN compared to the TN. Collectively, preconditioning cAD-MSCs via 3D culture systems can enhance inherent secretory properties that may improve the potency and efficacy of MSCs-based therapies for bone regeneration process.

Association of Toll-Like Receptor 5 Gene Polymorphism with Susceptibility to Ossification of the Posterior Longitudinal Ligament of the Spine in Korean Population

  • Chung, Won-Suk;Nam, Dong-Hyun;Jo, Dae-Jean;Lee, Jun-Hwan
    • Journal of Korean Neurosurgical Society
    • /
    • v.49 no.1
    • /
    • pp.8-12
    • /
    • 2011
  • Objective: Ossification of the posterior longitudinal ligament (OPLL) has a strong genetic component. Specific gene polymorphisms may be associated with OPLL in several genes which regulate calcification in chondrocytes, change of extracellular collagen matrix and secretions of many growth factors and cytokines controlling bone morphogenesis. Toll-like receptor 5 (TLR5) may playa role in the pathogenesis of OPLL by intermediate nuclear factor-kappa B (NF-${\kappa}B$). The current study focused on coding single nucleotide polymorphisms (SNPs) of TLR5 for a case-control study investigating the relationship between TLR5 and OPLL in a Korean population. Methods: A total of 166 patients with OPLL and 231 controls were recruited for a case-control association study investigating the relationship between SNPs of TLR5 gene and OPLL. Four SNPs were genotyped by direct sequencing (rs5744168, rs5744169, rs2072493, and rs5744174). SNP data were analyzed using the SNPStats, SNPAnalyzer, Haploview, and Helixtree programs. Multiple logistic regression analysis with adjustment for age and gender was performed to calculate an odds ratio (OR). Results: None of SNPs were associated with OPLL in three alternative models (codominant, dominant, and recessive models; p> 0.05). A strong linkage disequilibrium block, including all 4 SNPs, was constructed using the Gabriel method. No haplotype was significantly associated with OPLL in three alternative models. Conclusion: These results suggest that Toll-like receptor 5 gene may not be associated with ossification of the posterior longitudinal ligament risk in Korean population.

Expression of Morphogenic Protein Genes in Juvenile Red Spotted Grouper (Epinephelus akaara) with Deformity (붉바리(Epinephelus akaara) 기형 발생 치어의 형태형성 유전자 발현)

  • You, Jin Ho;Mun, Seong Hee;Oh, Hyeon Ji;Baek, Hea Ja;Lee, Young-Don;Lee, Chi Hoon;Kwon, Joon Yeong
    • Journal of Marine Life Science
    • /
    • v.4 no.1
    • /
    • pp.38-43
    • /
    • 2019
  • The deformity occurring at the early developmental stage of red spotted grouper (Epinephelus akaara) causes detrimental effects on the process of juvenile production. In this study, we have compared the expressions of several key genes (insulin like growth factor 1: IGF-1, bone morphogenic protein 4: BMP4, peroxisome proliferator-activated receptors γ: PPARγ, matrix Gla protein: MGP) for morphogenesis between normal and 2 types (cephalic and jaw) of deformed juvenile fish. Expression of these genes were investigated in the brain, liver and muscle of each group of fish (n=20) by real-time PCR. Expression of IGF-1 and BMP4 mRNA in the brain and liver showed significant difference between normal and deformed fish (p<0.05). However, no difference was observed in the expression of PPARγ and MGP mRNA between normal and deformed fish in any tissues. It seems certain that IGF-1 and BMP4 are associated with the state of deformity in juvenile red spotted grouper.