• Title/Summary/Keyword: bone maturation

Search Result 139, Processing Time 0.021 seconds

Propofol promotes osteoclastic bone resorption by increasing DC-STAMP expression

  • Kim, Eun-Jung;Kim, Hyung Joon;Baik, Seong Wan;Kim, Kyung-Hoon;Ryu, Sie Jeong;Kim, Cheul-Hong;Shin, Sang-Wook
    • Journal of Dental Anesthesia and Pain Medicine
    • /
    • v.18 no.6
    • /
    • pp.349-359
    • /
    • 2018
  • Background: Propofol is an intravenous anesthetic which has antioxidant effects due to its similarity in molecular structure to ${\alpha}$-tocopherol. It has been reported that ${\alpha}$-tocopherol increases osteoclast fusion and bone resorption. Here, we investigated the effects of propofol on signaling pathways of osteoclastogenic gene expression, as well as osteoclastogenesis and bone resorption using bone marrow-derived macrophages (BMMs). Methods: BMMs were cultured with macrophage colony-stimulating factor (M-CSF) alone or M-CSF plus receptor activator of nuclear factor kappa B ligand (RANKL) in the presence of propofol ($0-50{\mu}M$) for 4 days. Mature osteoclasts were stained for tartrate-resistant acid phosphatase (TRAP) and the numbers of TRAP-positive multinucleated osteoclasts were counted. To examine the resorption activities of osteoclasts, a bone resorption assay was performed. To identify the mechanism of action of propofol on the formation of multinucleated osteoclasts, we focused on dendritic cell-specific transmembrane protein (DC-STAMP), a protein essential for pre-osteoclastic cell fusion. Results: Propofol increased the formation of TRAP-positive multinucleated osteoclasts. In addition, the bone resorption assay revealed that propofol increased the bone resorption area on dentin discs. The mRNA expression of DC-STAMP was upregulated most strongly in the presence of both RANKL and propofol. However, SB203580, a p38 inhibitor, significantly suppressed the propofol/RANKL-induced increase in mRNA expression of DC-STAMP. Conclusion: We have demonstrated that propofol enhances osteoclast differentiation and maturation, and subsequently increases bone resorption. Additionally, we identified the regulatory pathway underlying osteoclast cell-cell fusion, which was enhanced by propofol through p38-mediated DC-STAMP expression.

Tissue Responses Around Two Types of Dental Implant in Beagle Dog (두 종류의 치과 임플란트 식립후 조직의 반응에 대한 비교연구)

  • Chung, Hyung-Geun;Kwon, Young-Hyuk;Lee, Man-Sup;Park, Joon-Bong
    • Journal of Periodontal and Implant Science
    • /
    • v.29 no.4
    • /
    • pp.929-942
    • /
    • 1999
  • Three beagle dogs aged over one and half years were used in this study. All mandibular premolars were carefully extracted. Two AVANA implants(Sumin, Korea) and two 3i implants(Implant Innovation, USA) were installed at each right and left side respectively. Each dog was sacrificed at 4, 8. 12 weeks. Non-decalcified specimens were made and stained for a light microscopic study. The results were as follows ; 1. Inflammation was not observed in the area of bone tissue adjacent to the implant body. 2. With time, quantity of osseointe-gration increased in each type of den-dental implant. There was no difference between AVANA implant and 3i implant. 3. Maturation of the bone around each type of the dental implant increased with time. 12 weeks after implant installation, the bone around dental implant represented compact bone-like appreance. 4. In case implants were located adjacent to a root, newly-formed periodontal ligament tissue was observed around the implant. And the direction of the periodontal ligament fiber was parallel to the surface of the implant . Within the results of this study, AVANA implants represented similar osseointegra-tion in comparision with 3i implants.

  • PDF

Activation of Nrf2 by sulfuretin stimulates chondrocyte differentiation and increases bone lengths in zebrafish

  • Seo-Hyuk Chang;Hoi-Khoanh Giong;Da-Young Kim;Suji Kim;Seungjun Oh;Ui Jeong Yun;Jeong-Soo Lee;Kye Won Park
    • BMB Reports
    • /
    • v.56 no.9
    • /
    • pp.496-501
    • /
    • 2023
  • Elongation of most bones occur at the growth plate through endochondral ossification in postnatal mammals. The maturation of chondrocyte is a crucial factor in longitudinal bone growth, which is regulated by a complex network of paracrine and endocrine signaling pathways. Here, we show that a phytochemical sulfuretin can stimulate hypertrophic chondrocyte differentiation in vitro and in vivo. We found that sulfuretin stabilized nuclear factor (erythroid-derived 2)-like 2 (Nrf2), stimulated its transcriptional activity, and induced expression of its target genes. Sulfuretin treatment resulted in an increase in body length of zebrafish larvae and induced the expression of chondrocyte markers. Consistently, a clinically available Nrf2 activator, dimethyl fumarate (DMF), induced the expression of hypertrophic chondrocyte markers and increased the body length of zebrafish. Importantly, we found that chondrocyte gene expression in cell culture and skeletal growth in zebrafish stimulated by sulfuretin were significantly abrogated by Nrf2 depletion, suggesting that such stimulatory effects of sulfuretin were dependent on Nrf2, at least in part. Taken together, these data show that sulfuretin has a potential use as supporting ingredients for enhancing bone growth.

Physalin D inhibits RANKL-induced osteoclastogenesis and bone loss via regulating calcium signaling

  • Ding, Ning;Lu, Yanzhu;Cui, Hanmin;Ma, Qinyu;Qiu, Dongxia;Wei, Xueting;Dou, Ce;Cao, Ning
    • BMB Reports
    • /
    • v.53 no.3
    • /
    • pp.154-159
    • /
    • 2020
  • We investigated the effects of physalin A, B, D, and F on osteoclastogenesis induced by receptor activator of nuclear factor κB ligand (RANKL). The biological functions of different physalins were first predicted using an in silico bioinformatic tool (BATMAN-TCM). Afterwards, we tested cell viability and cell apoptosis rate to analyze the cytotoxicity of different physalins. We analyzed the inhibitory effects of physalins on RANKL-induced osteoclastogenesis from mouse bone-marrow macrophages (BMMs) using a tartrate-resistant acid phosphatase (TRAP) stain. We found that physalin D has the best selectivity index (SI) among all analyzed physalins. We then confirmed the inhibitory effects of physalin D on osteoclast maturation and function by immunostaining of F-actin and a pit-formation assay. On the molecular level, physalin D attenuated RANKL-evoked intracellular calcium ([Ca(2+)](i)) oscillation by inhibiting phosphorylation of phospholipase Cγ2 (PLCγ2) and thus blocked the downstream activation of Ca2+/calmodulin-dependent protein kinases (CaMK)IV and cAMP-responsive element-binding protein (CREB). An animal study showed that physalin D treatment rescues bone microarchitecture, prevents bone loss, and restores bone strength in a model of rapid bone loss induced by soluble RANKL. Taken together, these results suggest that physalin D inhibits RANKL-induced osteoclastogenesis and bone loss via suppressing the PLCγ2-CaMK-CREB pathway.

Bone repair in defects filled with AH Plus sealer and different concentrations of MTA: a study in rat tibiae

  • Jessica Emanuella Rocha Paz;Priscila Oliveira Costa;Albert Alexandre Costa Souza;Ingrid Macedo de Oliveira;Lucas Fernandes Falcao;Carlos Alberto Monteiro Falcao;Maria Angela Area Leao Ferraz;Lucielma Salmito Soares Pinto
    • Restorative Dentistry and Endodontics
    • /
    • v.46 no.4
    • /
    • pp.48.1-48.10
    • /
    • 2021
  • Objectives: This study aimed to evaluate the effects on bone repair of different concentrations of mineral trioxide aggregate (MTA) added to AH Plus. Materials and Methods: Bone tissue reactions were evaluated in 30 rats (Rattus norvegicus) after 7 and 30 days. In the AH + MTA10, AH + MTA20, and AH + MTA30 groups, defects in the tibiae were filled with AH Plus with MTA in proportions of 10%, 20% and 30%, respectively; in the MTA-FILL group, MTA Fillapex was used; and in the control group, no sealer was used. The samples were histologically analyzed to assess bone union and maturation. The Kruskal-Wallis and Mann-Whitney tests were performed for multiple pairwise comparisons (p ≤ 0.05). Results: At the 7-day time point, AH + MTA10 was superior to MTA-FILL with respect to bone union, and AH + MTA20 was superior to MTA-FILL with respect to bone maturity (p < 0.05). At the 30-day time point, both the AH + MTA10 and AH + MTA20 experimental sealers were superior not only to MTA-FILL, but also to AH + MTA30 with respect to both parameters (p < 0.05). The results of the AH + MTA10 and AH + MTA20 groups were superior to those of the control group for both parameters and experimental time points (p < 0.05). Conclusions: The results suggest the potential benefit of using a combination of these materials in situations requiring bone repair.

Effect of bone graft materials on bone formation in guided bone regeneration using perforated titanium membrane (천공형 티타늄막을 이용한 골유도재생술 시 수종의 골이식재가 골재생에 미치는 영향)

  • Hong, Seung-Bum;Kwon, Young-Hyuk;Park, Joon-Bong;Herr, Yeek;Chung, Jong-Hyuk
    • Journal of Periodontal and Implant Science
    • /
    • v.36 no.1
    • /
    • pp.223-237
    • /
    • 2006
  • The purpose of the present study was to evaluate the effect of bone graft materials including deproteinized bovine bone(DBB), demineralized freeze-dried bone(DFDB), freeze-dried bone(FDB) on bone formation in guided bone regeneration using perforated titanium membrane(TM). 16 adult male rabbits(mean BW 2kg) were used in this study and 4 rabbits allotted to each test group. Intramarrow penetration(diameter 6.5mm) was done with round carbide bur on calvaria to promote blood supply and clot formation in the wound area. The test groups were devided into 4 groups as follows: TM only(test 1), TM +DBB(test 2), TM +DFDB(test 3), TM +FDB(test 4). Perforated titanium membrane was contoured in rectangular parallelepiped shape(0.5mm pore diameter, 10mm in one side, 2mm in inner height), filled the each graft material and placed on the decorticated carvaria. Perforated titanium membrane was fixed with resorbable suture materials. The animals were sacrificed at 2, 8 weeks after the surgery. Non-decalcified preparations were routinely processed for histologic analysis. The results of this study were as follows: 1. Perforated titanium membrane was biocompatible. 2. Perforated titanium membrane had capability of maintaining the space during the healing period but invasion of soft tissue through the perforations of titanium membrane decreased the space available for bone formation. 3. In test 1 group without bone graft material, the amount of bone formation and bone maturation was better than other test groups. 4. Among the graft materials, the effect of freeze-dried bone on bone formation was best. 5. In the test groups using deproteinized bovine bone, demineralized freeze-dried bone, bone formation was a little. The spacemaking capability of the membrane may be crucial for bone formation. The combined treatment with the perforated titanium membrane and deproteinized bovine bone or demineralized freeze-dried bone failed to demonstrate any added effect in the bone formation. Minimization of size and numbers of perforations of titanium membrane or use of occlusive titanium membrane might be effective to acquire predictable results in the vertical bone formation.

Relationship between maturation indices and morphology of the midpalatal suture obtained using cone-beam computed tomography images

  • Jang, Hong-Ik;Kim, Sang-Cheol;Chae, Jong-Moon;Kang, Kyung-Hwa;Cho, Jin-Woo;Chang, Na-Young;Lee, Keun-Young;Cho, Jin-Hyoung
    • The korean journal of orthodontics
    • /
    • v.46 no.6
    • /
    • pp.345-355
    • /
    • 2016
  • Objective: The purpose of this study was to determine whether predicting maturation of the midpalatal suture is possible by classifying its morphology on cone-beam computed tomography (CBCT) images and to investigate relationships with other developmental age indices. Methods: The morphology of the midpalatal suture was assessed by using CBCT images of 99 patients. Axial plane images of the midpalatal suture were classified into five stages according to the classification scheme. To make the assessment more accurate, the morphology and fusion of the midpalatal suture were additionally investigated on coronal cross-sectional planar images and volume-rendered images. Bone age was evaluated using the hand and wrist method (HWM) and cervical vertebrae method (CVM); dental age (Hellman's index), sex, and chronological age were also assessed. To evaluate relationships among variables, Spearman's rho rank test was performed along with crosstabs using contingency coefficients. Results: The HWM and CVM showed strong correlations with the maturation stage of the midpalatal suture, while other indices showed relatively weak correlations (p < 0.01). Through crosstabs, the HWM and CVM showed high association values with CBCT stage; the HWM demonstrated slightly higher values (p < 0.0001). Based on the HWM, the midpalatal suture was not fused until stage 6 in both sexes. Conclusions: Among developmental age indices, the HWM and CVM showed strong correlations and high associations, suggesting that they can be useful in assessing maturation of the midpalatal suture.

High fructose and high fat diet increased bone volume of trabecular and cortical bone in growing female rats (고과당 및 고지방 식이의 섭취가 성장기 동물모델의 골성장과 골성숙에 미치는 영향)

  • Ahn, Hyejin;Yoo, SooYeon;Park, Yoo-Kyoung
    • Journal of Nutrition and Health
    • /
    • v.48 no.5
    • /
    • pp.381-389
    • /
    • 2015
  • Purpose: The objective of this study was to investigate the effects of a high fructose and fat diet on bone growth and maturation in growing female rats. Methods: Three-week-old female SD rats were randomly assigned to four experimental groups; the control group (CON: fed control diet based on AIN-93G, n = 8); the high-fructose diet group (HFrc: fed control diet with 30% fructose, n = 8); the high-fat diet group (Hfat: fed control diet with 45 kcal% fat, n = 8); and the high-fat diet plus high fructose group (HFrc + HFat: fed diets 45 kcal% fat with 30% fructose, n = 8). Each group was assigned their respective diets for the remaining eight weeks. Bone-related parameters (bone mineral density (BMD) and structural parameters, osteocalcin (OC), deoxypyridinoline (DPD)) and morphologic changes of kidney were analyzed at the end of the experiment. Results: Final body weights and weight gain were higher in the HFat and HFrc + HFat groups and showed higher tendency in the HFrc group compared with those of the CON group (p < 0.05); however, no significant difference in caloric intake was observed among the four experimental groups. The serum OC levels of the HFrc and HFrc + HFat groups were lower than those of the CON and HFat groups (p < 0.05). Urinary levels of DPD did not differ among the experimental groups. BV/TV and Tb.N of trabecular bone were higher in the HFrc + HFat group and showed a higher tendency in the HFrc group than those of the CON and HFat groups (p < 0.05). Tb.Pf of trabecular bone were lower in the HFrc + HFat group than those in the CON and HFat groups (p < 0.05). However, no difference in trabecular BMD was observed among the experimental groups. Cortical bone volume was higher in the HFat and HFrc + HFat groups than in the CON and HFrc groups (p < 0.05). No morphology change in kidney was observed among the experimental groups. Conclusion: Our study suggests that 8 weeks of high-fructose and high fat intake could improve the bone quality (Structural parameters) of trabecular and cortical bone of tibia in growing female rats.

STATISTICAL CORRELATION ANALYSIS OF CVM, SMI AND MANDIBULAR LENGTH WITH NORMAL OCCLUSION IN GROWING CHILDREN (소아청소년기 정상 교합 아동에서 경추골 및 수완부골 성숙도에 대한 하악골 성장의 연관성)

  • Kim, Soo-Yung;Yang, Kyu-Ho;Choi, Nam-Ki;Kim, Seon-Mi
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.39 no.4
    • /
    • pp.357-365
    • /
    • 2012
  • There are orthodontic treatment which involves tooth movements and orthopedic treatment which involves skeletal movement. In childhood and adolescence, especially for the treatment of orthopedic treatment, the evaluation of bone maturity and growth potential is very important. The purpose of this study is to assess the developmental stage and to compare the amount of mandibular growth with cephalometric radiographs and hand-wrist radiograph in 6 to 13-year-old children with normal occlusion. The results are as follows : SMI and CVM showed a significant correlation (p < 0.05). Ar-Go, Co-Go, N-Go, S-Gn, N-Me, Co-Gn, Go-Me, Go-Gn increased with increasing maturity of hand-wrist and Ar-Go, Co-Go, N-Go, S-Gn, N-Me, Co-Gn, Go-Me, Go-Gn increased with increasing maturity of cervical vertebrae maturation. Also Ar-Go, Co-Go, N-Go, S-Gn, N-Me, Co-Gn, Go-Me, Go-Gn showed a significant correlation with each of the cervical vertebrae maturation stages and hand-wrist maturation stages (p < 0.05). These results suggested that mandibular growth had a significant correlation with cervical vertebrae maturation stages and hand-wrist maturation stages.

Comparative analysis of the in vivo kinetic properties of various bone substitutes filled into a peri-implant canine defect model

  • Jingyang Kang;Masaki Shibasaki;Masahiko Terauchi;Narumi Oshibe;Katsuya Hyodo;Eriko Marukawa
    • Journal of Periodontal and Implant Science
    • /
    • v.54 no.2
    • /
    • pp.96-107
    • /
    • 2024
  • Purpose: Deproteinized bovine bone or synthetic hydroxyapatite are 2 prevalent bone grafting materials used in the clinical treatment of peri-implant bone defects. However, the differences in bone formation among these materials remain unclear. This study evaluated osteogenesis kinetics in peri-implant defects using 2 types of deproteinized bovine bone (Bio-Oss® and Bio-Oss/Collagen®) and 2 types of synthetic hydroxyapatite (Apaceram-AX® and Refit®). We considered factors including newly generated bone volume; bone, osteoid, and material occupancy; and bone-to-implant contact. Methods: A beagle model with a mandibular defect was created by extracting the bilateral mandibular third and fourth premolars. Simultaneously, an implant was inserted into the defect, and the space between the implant and the surrounding bone walls was filled with Bio-Oss, Bio-Oss/Collagen, Apaceram-AX, Refit, or autologous bone. Micro-computed tomography and histological analyses were conducted at 3 and 6 months postoperatively (Refit and autologous bone were not included at the 6-month time point due to their rapid absorption). Results: All materials demonstrated excellent biocompatibility and osteoconductivity. At 3 months, Bio-Oss and Apaceram-AX exhibited significantly greater volumes of formation than the other materials, with Bio-Oss having a marginally higher amount. However, this outcome was reversed at 6 months, with no significant difference between the 2 materials at either time point. Apaceram-AX displayed notably slower bioresorption and the largest quantity of residual material at both time points. In contrast, Refit had significantly greater bioresorption, with complete resorption and rapid maturation involving cortical bone formation at the crest at 3 months, Refit demonstrated the highest mineralized tissue and osteoid occupancy after 3 months, albeit without statistical significance. Conclusions: Overall, the materials demonstrated varying post-implantation behaviors in vivo. Thus, in a clinical setting, both the properties of these materials and the specific conditions of the defects needing reinforcement should be considered to identify the most suitable material.