Journal of the Korean Association of Oral and Maxillofacial Surgeons
/
v.28
no.3
/
pp.205-215
/
2002
The purpose of this study was to evaluate the tissue response in various bone grafting materials, especially xenogenous bone materials in vivo, compare of bone formation capacity of various bone grafting materials on rat skull defects and evaluate the effect of Hyaluronic acid on healing of human Demineralized Freezed Dried Bone allogenous graft (DFDBA) materials in rat calvarial defects. 30 Sprague-Dawly rats were divided into 4 groups. $7{\times}7mm$ size bony defect were artificially prepared in the calvaria (both parietal bone) of all 30 rats and follwed group grafting of autogenous bone graft on right side and allogenic DFDBA on left side bone graft (rat DFDB) in 15 control group, but in 15 experimental group, xenograft (human DFDB) on left side, hyaluronic acid treated with xenograft on right side. Sequential sacrifices was performed at 1, 2, 4, 6, 8 weeks of experiment. These specimens were stained with H&E and MT stain, and then histologic analysis under light microscope was carried out. There were inflammatory reaction in all graft material during early stage. Autogenous and Allogenous DFDBA graft group observed inflammatory reaction at 1 week. Xenograft group persistant inflammatory reaction until 4 weeks, but in HA treated xenograft group inflammatory reaction was decreased at 2 weeks. Osteoblastic activity in control group was begun at 2 week, xenograft group was delayed at 6 weeks, however HA treated xenograft group was begun at 4 weeks. At 2 week, mild osteoclastic activity were observed in all xenograft group not in concerned to HA, but there was no difference each group after 4 weeks. There are most activated angiogenesis around graft mateirals in xenograft group at 2 weeks, but in HA treated xenograft group, decreased angiogenesis was observed at same time. Bone formation and bone maturation of xenograft group, there was no difference in HA treatment, was less than control group. Fibrosis around xenograft materials were observed until 6 weeks, there was no difference between xenograft and HA treated groups.
Purpose: The aim of this study was to examine the correlation of the subjective and the objective evaluation of edentulous ridge bone quality, and to evaluate the change of the dental implant stability in each bone density group for early healing period after implant installation. Methods: Sixty-seven implants(Osstem implant$^{(R)}$, Seoul, Korea) were included in this study. We evaluated the bone density by 2 methods. The one was the subjective method which was determined by practitioner s tactile sense, the other was the objective bone type was based on Hounsfield units. The implant stability in each bone type group was assessed by resonance frequency analyzer(Osstell mentor$^{(R)}$). Data were analyzed for the change of the implant stability, and they were compared to verify the difference of groups at the time of installation, 2, 6, 10, 14 weeks postoperatively. Spearman's correlation was used to demonstrate the correlation between the subjective and the objective evaluation of the bone density, and analysis of variance(ANOVA) was used to analyze the differences of implant stability at each time point. Results: There was no close relation between the subjective and the objective evaluation of the bone density(r=0.57). In the subjective groups, there was statistically significant difference between the type 1 and 3 at 10 weeks and between the type 2 and 3 at 14 weeks. In the objective groups, there was no statistically significant difference between the D 1, 2, 3, 4, and 5 group with regard to RFA from baseline to 14 weeks(P>0.1). Conclusions: The implant stability increased over time during the study, and it was improved with bone density proportionally after 2weeks postoperatively. It is recommended that the decision of bone density is base on Hounsfield unit for implant loading time.
Purpose: The purpose of this study was to radiographically evaluate marginal bony changes in relation to different vertical positions of dental implants. Methods: Two hundred implants placed in 107 patients were examined. The implants were classified by the vertical positions of the fixture-abutment connection (microgap): 'bone level,' 'above bone level,' or 'below bone level.' Marginal bone levels were examined in the radiographs taken immediately after fixture insertion, immediately after second-stage surgery, 6 months after prosthesis insertion, and 1 year after prosthesis insertion. Radiographic evaluation was carried out by measuring the distance between the microgap and the most coronal bone-to-implant contact (BIC). Results: Immediately after fixture insertion, the distance between the microgap and most coronal BIC was $0.06{\pm}0.68\;mm$; at second surgery, $0.43{\pm}0.83\;mm$; 6 months after loading, $1.36{\pm}0.56\;mm$; and 1 year after loading, $1.53{\pm}0.51\;mm$ ($mean{\pm}SD$). All bony changes were statistically significant but the difference between the second surgery and the 6-month loading was greater than between other periods. In the 'below bone level' group, the marginal bony change between fixture insertion and 1 year after loading was about 2.25 mm, and in the 'bone level' group, 1.47 mm, and in 'above bone level' group, 0.89 mm. Therefore, the marginal bony change was smaller than other groups in the 'above bone level' group and larger than other groups in the 'below bone level' group. Conclusions: Our results demonstrated that marginal bony changes occur during the early phase of healing after implant placement. These changes are dependent on the vertical positions of implants.
Kim, Eugene;Eo, Mi Young;Nguyen, Truc Thi Hoang;Yang, Hoon Joo;Myoung, Hoon;Kim, Soung Min
Maxillofacial Plastic and Reconstructive Surgery
/
v.41
/
pp.4.1-4.10
/
2019
Background: The mandibular third molar (M3) is typically the last permanent tooth to erupt because of insufficient space and thick soft tissues covering its surface. Problems such as alveolar bone loss, development of a periodontal pocket, exposure of cementum, gingival recession, and dental caries can be found in the adjacent second molars (M2) following M3 extraction. The specific aims of the study were to assess the amount and rate of bone regeneration on the distal surface of M2 and to evaluate the aspects of bone regeneration in terms of varying degree of impaction. Methods: Four series of panoramic radiographic images were obtained from the selected cases, including images from the first visit, immediately after extraction, 6 weeks, and 6 months after extraction. ImageJ software® (NIH, USA) was used to measure linear distance from the region of interest to the distal root of the adjacent M2. Radiographic infrabony defect (RID) values were calculated from the measured radiographic bone height and cementoenamel junction with distortion compensation. Repeated measures of analysis of variance and one-way analysis of variance were conducted to analyze the statistical significant difference between RID and time, and a Spearman correlation test was conducted to assess the relationship between Pederson's difficulty index (DI) and RID. Results: A large RID (> 6 mm) can be reduced gradually and consistently over time. More than half of the samples recovered nearly to their normal healthy condition (RID ≤ 3 mm) by the 6-month follow-up. DI affected the first 6 weeks of post-extraction period and only showed a significant positive correlation with respect to the difference between baseline and final RID. Conclusions: Additional treatments on M2 for a minimum of 6 months after an M3 extraction could be recommended. Although DI may affect bone regeneration during the early healing period, further study is required to elucidate any possible factors associated with the healing process. The DI does not cause any long-term adverse effects on bone regeneration after surgical extraction.
Purpose: This study was aimed at elucidating the pathogenesis of talar osteochondral lesion by analyzing the histopathological findings. Materials and Methods: Twenty specimens from 20 patients who underwent surgical treatment for talus osteochondral lesions were studied. Preoperative MRI images including T1, T2, and stir images were taken and cases were classified according to modification of the Anderson's classification. There were 5 cases of MRI group 1, 6 cases of group 2, 7 cases of group 3 and 2 cases of group 4. A full thickness osteochondral plug including the osteochondral lesion of the talus was harvested from each patient and reviewed histopathologic changes of osteochondral fragment using H-E staining. Mean diameter of specimens was 8.5 mm and mean depth was 10.3 mm. Pathologic changes of articular cartilage and subchondral bone were observed. Subchondral bone was divided into superficial, middle and deep zones according to depth. Cartilage formation, trabecular thickening and marrow fibrosis were observed in each zone. Results: There were detachment of the joint cartilage at the tidemark in 16 cases of 20 cases and the separated cartilages were almost necrotic on the histopathologic findings. Cartilage formation within subchondral bone was discovered beneath the tidemark in 12 cases. Trabeculae were increased and thickened in 17 cases. These pathologic changes were similar to fracture healing process and these findings were more conspicuous near the tidemark and showed transition to normal bone marrow tissue with depth. No correlation between the pathological progression and MRI stages was found. A large cyst shown on MRI's was microscopically turned out to be multiple micro-cysts accompanied by fibrovascular structure and newly formed cartilage tissue. Conclusion: The histopathologic findings of osteochondral lesions are detachment of overlying cartilage at the tidemark and subsequent changes of subchondral bone. Subchondral bone changes are summarized as cartilage formation, marrow fibrosis and trabecular thickening that mean healing process following repeated micro fractures of trabecular. These osteochondral lesions should have differed from osteochondral fractures.
Kim, Jae-Kyong;Kim, Se-Eun;Go, A-Ra;Kim, Seung-Hyun;Shim, Kyung-Mi;Bae, Chun-Sik;Choi, Seok-Hwa;Kang, Seong-Soo
Journal of Veterinary Clinics
/
v.29
no.5
/
pp.412-415
/
2012
A 1-year-old, castrated male Yorkshire terrier (case 1) and a 7-year-old female Poodle (case 2) presented with delayed union fractures. In case 1, the dog had a fractured right distal radius and ulna. In case 2, the dog had a fractured left distal tibia and fibula. A physical examination and radiographs performed in both dogs revealed delayed union fractures with large gaps. The fracture sites were fixed by bone plate and screws. Autogenous cancellous bone graft was applied into the fracture gap. To encourage rapid bone union, we used matrigel containing $20{\mu}g$ of recombinant human bone morphogenetic protein-2 (rhBMP-2) in the fracture site. Radiographs were taken postoperatively to monitor healing. Rapid bone union was noted in both dogs in long-term radiographs. In case 1, the radiographs revealed that the fracture gaps of the radius and ulna were bridged at 2 weeks. Fracture lines were not observed and normal appearance was restored at 20 weeks. In case 2, the radiographs showed that fracture repair had progressed at 11 weeks. The fractures healed faster than expected in these two cases. The results indicate that rhBMP-2 and matrigel may be effective and useful materials to enhance healing of delayed fractures.
Kim, Chong-Kwan;Cho, Kyoo-Sung;Chai, Jung-Kiu;Choi, Eun-Jeong;Moon, Ik-Sang;Choi, Seong-Ho
Journal of Periodontal and Implant Science
/
v.23
no.3
/
pp.359-373
/
1993
The ultimate objective of periodontal therapy is not only stopping the progression of periodontal disease, but also promoting the regeneration of lost periodontal tissue. Guided Tissue Regeneration, which is based on the principle that the goal of periodontal regeneration can be achieved by preventing apical migration of gingival epithelium and blocking cells originating from connective tissue, has been developed and used as a clinical procedure, and although it has shown excellent results in connective tissue healing, there have not been many studies showing its effect on the regeneration of alveolar bone loss due to periodontal disease. The objectives of this study are to investigate the result of 12 months-long treatment following guided tissue regeneration using expanded polytetrafluoroehylene membrane, and to observe the presence of regenerated alveolar bone. Forty-one teeth from 28 patients with clinical diagnosis of periodontitis has been selected. In fifteen of those interproximal intrabony defects, only flap operation had been carried out, and designated as the control group. Twenty-six intrabony defects received e-PTFE membrane following flap operation, and designated as the experimental group. Eleven teeth whose membrane had been exposed were excluded from the experiment. Various measurements including probing depth, loss of attachment, probing bone level and gingival recession have been recorded at 6th month and 12th month, and the significance of the changes has been analyzed. The results are as follows: 1. Probing depth at 6th and 12th month has shown a significant decrease in both groups (p<0.01), but significantly higher decrease was found in the experimental group compared to the control at the month(p<0.05). 2. Loss of attachment at 6th and 12th month has shown a significant decrease in both groups, but significantly higher decrease was found in the experimental group compared to the control (p<0.05). 3. Probing bone level at 6th and 12th month has shown a insignificant decrease in the control group and significant decrease in the experimental group (p<0.01). Significantly higher decrease in probing bone level was found in the experimental group (p<0.05). 4. Gingival recession at 6th and 12th month has shown a statistically significant increase (p<0.05), and the control group showed higher increase compared to the experimental group although no statistical significance was found. As these results have shown, the use of e-PTFE membrane in intrabony pockets results in marked decrease in the loss of attachment and probing bone level. This seems to indicate that e-PTFE membrane may play a role in alveolar bone regeneration in intrabony defects.
The aim of this study was to evaluate bone promotion of bioreabsorbable guided tissue regeneration for generating new bone adjacent to osseointegrated implants in dogs. Third premolars were extracted in dgo mandibles. Cylindrical HA-coated implants were placed into extracted sockets in dogs. And test sites were protected by $GUIDOR^{(R)}$ matrix barrier. But control sites were not protected by membrances. The sites were examined clinically, radiologically, and histologically after 1, 2, and 4 months to assess bone regeneration. The results obtained were as foolows : 1. There were the good healing and the stability of $GUIDOR^{(R)}$ matrix barrier in experimental site during the healing period. 2. Complete resorption of $GUIDOR^{(R)}$ matrix barrier was clinically observed about 4 months postoperatively. 3. The woven bone changed to mature bone with a normal cortical plate and mature, resting periosteum after 4 months. 4. In experimental site, there was a significantly greater bone promtion than observed in control site. 5. $GUIDOR^{(R)}$ matrix barrier was useful for the preparation of immediate dental implants.
Sinus lift procedure is frequently required for the maxillary molar implant placement. Previous studies have demonstrated alveolar ridge preservation (ARP) can maintain the dimensions of ridge height and width. However, there is a lack of studies which evaluated the effect of ARP to avoid sinus lift procedure. Purpose of this study is to describe a method reducing the need of sinus lift surgery by ARP in maxillary molar areas and to assess the feasibility clinically, radiologically and histologically. Ten maxillary molars in ten patients had severe vertical bone resorption with minimal residual bone height. They were considered having the high possibility of the necessity of sinus lift procedure for dental implant after the extraction. After extraction, open healing ARP with deproteinized bovine bone mineral mixed with 10% collagen and resorbable collagen membranes was performed. After sufficient healing, dental implants were placed, and evaluated clinically and radiologically. Histological observation was conducted just before the implantation in one patient. Implants were successfully placed without sinus lift in all ten cases. All the implants were restored with no sign of complications, and patients are now in a close follow-up up to 20 months post-loading. Histological observation showed minimal inflammatory reaction and newly formed bone was substantially noted. The ARP technique has successfully avoided the sinus lift surgeries. It appears that this procedure may improve the simplicity of the clinical process for the clinicians and reduce the discomfort of patients.
Purpose: Among the materials for cranioplasty, autogenous bone is ideal because it is less susceptible to infection and has lower rates of subsequent exposure. However, the procedure is technically demanding to perform and requires a donor site. Disadvantages further exist when the defect is large and there are attendant limitations in donor site. The authors present their experience with reconstruction of large skull defect using right-angled zigzag osteotomized outer table of autogenous calvarial bone, overcoming the limitation in donor site. Methods: From 2000 to 2006, 9 patients were retrospectively reviewed, who had undergone reconstruction with right angled zigzag osteotomized outer table of autogenous calvarial bone. Results: Aesthetically satisfactory skull shape was achieved. Major complications of infection, hematoma, plate exposure, and donor site complications of dural tear with bleeding, cerebrospinal fluid leak, and meningitis were not seen. One patient had delayed wound healing and was successfully managed conservatively. Conclusion: Autogenous bone is the material of choice for cranioplasty, especially in complicated cases. Right angled zigzag osteotomy is a useful method in reconstruction of large skull defects with less donor site morbidity.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.