• Title/Summary/Keyword: bond structure

Search Result 1,121, Processing Time 0.033 seconds

Bond and ductility: a theoretical study on the impact of construction details - part 1: basic considerations

  • Zwicky, Daia
    • Advances in concrete construction
    • /
    • v.1 no.1
    • /
    • pp.103-119
    • /
    • 2013
  • The applicability of limit analysis methods in design and assessment of concrete structures generally requires a certain plastic deformation capacity. The latter is primarily provided by the ductility of the reinforcement, being additionally affected by the bond properties between reinforcing steel and concrete since they provoke strain localization in the reinforcement at cracks. The bond strength of reinforcing bars is not only governed by concrete quality, but also by construction details such as bar ribbing, bar spacing or concrete cover thickness. For new concrete structures, a potentially unfavorable impact on bond strength can easily be anticipated through appropriate code rules on construction details. In existing structures, these requirements may not be necessarily satisfied, consequently requiring additional considerations. This two-part paper investigates in a theoretical study the impacts of the most frequently encountered construction details which may not satisfy design code requirements on bond strength, steel strain localization and plastic deformation capacity of cracked structural concrete. The first part introduces basic considerations on bond, strain localization and plastic deformation capacity as well as the fundamentals of the Tension Chord Model underlying the further investigations. It also analyzes the impacts of the hardening behavior of reinforcing steel and concrete quality. The second part discusses the impacts of construction details (bar ribbing, bar spacing, and concrete cover thickness) and of additional structure-specific features such as bar diameter and crack spacing.

A Study on the Chemical Constituents from Marine Sponge Luffariella sp. (해면 Luffariella sp.의 화학적 성분 연구)

  • Park, Sun Ku;Kim, Sung Soo;Park, Jun Dae;Hong, Jung Sun;Kim, In Kyu
    • Journal of the Korean Chemical Society
    • /
    • v.39 no.7
    • /
    • pp.559-563
    • /
    • 1995
  • The three metabolites, Germacrene alcohol(1), Aaptamine(2) and Hexacyclic terpene(3) were isolated from Marine Sponge Luffariella sp., collected in October 1992, Manado Bay, Sulawesi in Indonesia showed in vitro activity against KB cancer cell line, and structure assignment for 1 was corrected by comparison of their spectral data with the literature $values^1$. Their structure were elucidated by $^1H$, $^13C$ NMR, $^1H$ $^13C$(1 bond) Heteronuclear Multiple Quantum Coherence Spectroscopy$(HMQC)^2$, $^1H$ $^13C$(2 and 3 bond) Heteronuclear Multiple Bond Correlation Spectroscopy$(HMBC)^3$, Electron Impact Mass Spectroscopy(EI ms), Ultra-violet Spectroscopy(UV) and Infrared Spectroscopy(IR).

  • PDF

Bond Stress of the Bar Removed Rust with Concrete (전식녹을 제거한 철근과 콘크리트의 부착응력에 관한 실험적 연구)

  • Choi, Hyo-Seok;Lee, Joo-Il;Ryu, Soo-Hyun;Yu, Ho-Hyun;Kim, Jin-Mu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.5 no.1
    • /
    • pp.188-194
    • /
    • 2001
  • A reinforced concrete structure is complex structure that works as one body with bonding role of steel bar and concrete. The bonding action between steel bar and concrete makes possible the compound structure. The transmission of mutual strength of the steel bar with concrete in structure is determined by the bonding characteristic of steel bar and concrete surface. But the efficiency of bonding characteristic of steel bar is Questionable by the corrosion cause by the delay construction term, the wrong management, etc. So this study investigate bonding characteristic of reinforced concrete using pull-out test method which steel bar removed rust and the principal variables of this study are concrete compression strength and the degree of corrosion. The result showed that bonding strength tend to increase when removed rust of steel bar whereas it tend to decrease when not removed rust.

  • PDF

Bond Immunization Model with Non-parallel shift Term-Structure using Partial Duration (비평행 이동 기간구조하에서 부분 듀레이션을 이용한 채권 면역 모델)

  • Park, Woo-Cheol;Choi, Gyung-Hyun
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.26 no.3
    • /
    • pp.249-256
    • /
    • 2000
  • Bond immunization model is used to minimize interest rate risk for investing in fixed-income market, the model equalizes asset and liability values using the duration which is the sensitivity of portfolio value with respect to the interest rate. However this model might generate an error in practice because the model is based on unreal hypothesis, so called "Parallel Shift Term Structure". In this paper, we use the neural network approach to overcome the parallel shift term structure and try to employ this term structure function to the traditional immunization model. Finally, we present some computational test results that show the superiority of the partial immunization model to the traditional methods.

  • PDF

The Crystal and Molecular Structure of Carbutamide, ($C_11H_17N_3O_3S$) (Carbutamide ($C_11H_17N_3O_3S$)의 결정및 분자구조)

  • 구정회;조성일;연양희
    • YAKHAK HOEJI
    • /
    • v.26 no.1
    • /
    • pp.9-23
    • /
    • 1982
  • The structure of 1-butyl-3-sulfanyl urea, ($C_{11}H_{17}N_{3}O_{3}S$) carbutamide has been determined from 575 significant independent reflections collected on an automated four-circle diffractometer. The crystals are orthorhomic, space group, $P2_{1}2_{1}2_{1}$, Z=4, with unit cell dimensions a=9.257 (2), b=9.928 (2), c=15.287 (3)${\AA}$. The structure was solved by the direct methods and refined by least-squares procedure to a final R value of 0.062. Features of the structure include layers of molecules joined by N-H....O hydrogen bond distances ranging from 2.745 to 3.100${\AA}$ involved in a bifurcated hydrogen bond across two fold screw along a and b axes. The atoms forming the urea system are essentially planar.

  • PDF

Quantum Mechanical Investigation on the Intermediates of Alkene-Ozone Reaction (알켄-오존 반응의 중간 생성물에 대한 ab initio 양자역학적 고찰)

  • Kang, Chang Deok;Kim, Seung Jun
    • Journal of the Korean Chemical Society
    • /
    • v.42 no.2
    • /
    • pp.161-171
    • /
    • 1998
  • The geometrical parameters, vibrational frequencies, and IR intensities for primary ozonide (POZ), secondary ozonide (SOZ) and carbonyl oxide as the intermediates of alkene-ozone reaction have been predicted using high level ab initio quantum mechanical method with various basis sets. In general, the polarization function decreases bond lengths and bond angles, while the electron correlation effect increases bond lengths slightly. The electronic structure of carbonyl oxide has been predicted to be zwitterionic structure and energy difference between zwitterionic and diradical structure is evaluated to be 22.4 kcal/mol at TZ2P CISD level of theory. The experimental vibrational frequencies and IR intensities of POZ and SOZ will be compared and discussed with our high level theoretical predictions.

  • PDF

Hydrogen Bonds in GlcNAc( β1,3)Gal( β)OMe in DMSO Studied by NMR Spectroscopy and Molecular Dynamics Simulations

  • Shim, Gyu-Chang;Shin, Jae-Min;Kim, Yang-Mee
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.2
    • /
    • pp.198-202
    • /
    • 2004
  • Hydrogen bond is an important factor in the structures of carbohydrates. Because of great strength, short range, and strong angular dependence, hydrogen bonding is an important factor stabilizing the structure of carbohydrate. In this study, conformational properties and the hydrogen bonds in GlcNAc( ${\beta}$1,3)Gal(${\beta}$)OMe in DMSO are investigated through NMR spectroscopy and molecular dynamics simulation. Lowest energy structure in the adiabatic energy map was utilized as an initial structure for the molecular dynamics simulations in DMSO. NOEs, temperature coefficients, SIMPLE NMR data, and molecular dynamics simulations proved that there is a strong intramolecular hydrogen bond between O7' and HO3' in GlcNAc( ${\beta}$1,3)Gal(${\beta}$)OMe in DMSO. In aqueous solution, water molecule makes intermolecular hydrogen bonds with the disaccharides and there was no intramolecular hydrogen bonds in water. Since DMSO molecule is too big to be inserted deep into GlcNAc(${\beta}$1,3)Gal(${\beta}$)OMe, DMSO can not make strong intermolecular hydrogen bonding with carbohydrate and increases the ability of O7' in GlcNAc(${\beta}$1,3)Gal(${\beta}$)OMe to participate in intramolecular hydrogen bonding. Molecular dynamics simulation in conjunction with NMR experiments proves to be efficient way to investigate the intramolecular hydrogen bonding existed in carbohydrate.

A study on the Structure of (62-x)CaO·38Al2O3 ·xBaO Glasses by Molecular Dynamics Simulation (분자동력학법에 의한(62-x)CaO·38Al2O3 ·xBaO 유리의 구조 분석)

  • Lee, Seong-Joo;Kang, Eun-Tne
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.3 s.298
    • /
    • pp.175-181
    • /
    • 2007
  • Molecular dynamics simulation (MD) of $(62-x)CaO{\cdot}38Al_{2}O_{3}{\cdot}xBaO$ glasses has been carried out using empirical potentials with the covalent term. The simulations closely reproduce the total neutron correlation functions of glass with 5 mol% BaO and physical properties of these glasses such as elastic constants. For these glasses, aluminum is tetrahedrally coordinated by oxygen, but there is a part of five-fold and six-fold coordination of aluminum. There are no major changes to the mid-range structure of glass, as barium is substituted for calcium. To predict the barium coordination number, we have used the bond valence (BV) theory and also compared the results of simulation with Bond valence. The coordination number for oxygen around barium atoms is close to 8 and the average distance of barium and oxygen is nearly 2.80 A. The viscosity of these glasses increases with the content of barium oxide substituted for calcium oxide.

The Effect of Debt Capacity on the Pecking Order Theory of Fisheries Firms' Capital Structure (수산기업의 부채수용력이 자본조달순서이론에 미치는 영향)

  • Nam, Soo-Hyun;Kim, Sung-Tae
    • The Journal of Fisheries Business Administration
    • /
    • v.45 no.3
    • /
    • pp.55-69
    • /
    • 2014
  • We try to test the pecking order theory of Korean fisheries firm's capital structure using debt capacity. At first, we estimate the debt capacity as the probability of assigning corporate bond rating from credit-rating agencies. We use logit regression model to estimate this probability as a proxy of debt capacity. The major results of this study are as follows. Firstly, we can confirm the fisheries firm's financing behaviour which issues new debt securities for financial deficit. Empirical test of SSM model indicates that the higher probability of assigning corporate bond rating, the higher the coefficient of financial deficit. Especially, high probability group follows this result exactly. Therefore, the pecking order theory of fisheries firm's capital structure applies well for high probability group which means high debt capacity. It also applies for medium and low probability group, but their significances are not good. Secondly, the most of fisheries firms in high probability group issue new debt securities for their financial deficit. Low probability group's fisheries firms also issue new debt securities for their financial deficit within the limit of their debt capacity, but beyond debt capacity they use equity financing for financial deficit. Therefore, the pecking order theory on debt capacity come into existence well in high probability group.

Microwave Dielectric Properties of 0.95Ca0.85Nd0.1TiO3−0.05LnAlO3 (Ln=Sm, Dy, Er) Ceramics

  • Kim, Eung-Soo;Jeon, Chang-Jun
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.10
    • /
    • pp.537-541
    • /
    • 2007
  • Microwave dielectric properties of $0.95 Ca_{0.85}Nd_{0.1}TiO_3-0.05LnAlO_3$ (Ln=Sm, DH, Er) were investigated as a function of sintering temperature and lanthanide ion type. A single perovskite phase with an orthorhombic structure was obtained throughout the entire range of composition. The dielectric constant (K) was dependent upon the dielectric polarizabilities and the B-site bond valence in the $ABO_3$ perovskite structure. The quality factor (Qf) of the specimens with $ErAlO_3$ was smaller than those with $SmAlO_3\;and/or\;DyAlO_3$ due to the smaller grain size. The temperature coefficient of resonant frequency (TCF) could be controlled from $107.28ppm/^{\circ}C$ at Ln=Sm to $87.23ppm/^{\circ}C$ at Ln=Er due to the changes of B-site bond valence in the $ABO_3$ perovskite structure.