• Title/Summary/Keyword: bond stress and slip

Search Result 154, Processing Time 0.021 seconds

Determination of Steel-concrete Interface Parameters: Me chanical Properties of Interface Parameters (강-콘크리트 계면의 계면상수 결정 : 계면상수의 역학적 성질)

  • Lee, Ta;Joo, Young-Tae;Lee, Yong-Hak
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.6
    • /
    • pp.781-788
    • /
    • 2009
  • Mechanical properties of steel-concrete interface were evaluated on the basis of experimental observations. The properties included bond strength, unbounded and bonded friction angles, residual level of friction angle, mode I fracture energy, mode II bonded fracture energy and unbonded slip-friction energy under different levels of normal stress, and shape parameters to define geometrical shape of failure envelope. For this purpose, a typical type of constitutive model of describing steel-concrete interface behavior was presented based on a hyperbolic three-parameter Mohr-Coulomb type failure criterion. The constitutive model depicts the strong dependency of interface behavior on bonding condition of interface, bonded or unbounded. Values of the interface parameters were determined through interpretation of experimental results, geometry of failure envelope and sensitivity analysis. Nonlinear finite element analysis that incorporates steel-concrete interface as well as material nonlinearities of concrete and steel were performed to predict the experimental results.

Effect of Substituting Normal-Weight Coarse Aggregate on the Workability and Mechanical Properties of Heavyweight Magnetite Concrete (중량 자철석 콘크리트의 유동성 및 역학적 특성에 미치는 보통중량 굵은골재 치환율의 영향)

  • Mun, Jae-Sung;Mun, Ju-Hyun;Yang, Keun-Hyeok;Lee, Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.4
    • /
    • pp.439-446
    • /
    • 2013
  • The objective of this study is to evaluate the workability and various mechanical properties of heavyweight magnetite concrete and examine the reliability of the design equations specified in code provisions. The main parameters investigated were the water-to-cement ratio and substitution level of normal-weight coarse aggregate (granite) for magnetite. The oven-dried unit weight of concrete tested ranged between 2446 and $3426kg/m^3$. The measured mechanical properties included compressive strength development, stress-strain curve, splitting tensile strength, moduli of elasticity and rupture, and bond stress-slip relationship of concrete. Test results revealed that the initial slump of heavyweight magnetite concrete increased as the substitution level of normal-weight coarse aggregate increases. The substitution level of normal-weight coarse aggregate had little influence on the compressive strength and tensile resistance capacity of heavyweight concrete, while it significantly affected the modulus of elasticity and stress-strain curves of such concrete. The design equations of ACI 349-06 and CEB-FIP provisions mostly conservatively predicted the mechanical properties of heavyweight magnetite concrete, but the empirical equations for modulus of elasticity and splitting tensile strength need to be modified considering the unit weight of concrete.

Long-Term Behavior of Square CFT Columns under Concentric Load (중심축 하중을 받는 각형 CFT 기둥의 장기거동에 관한 연구)

  • Kwon Seung-Hee;Kim Tae-Hwan;Lee Tae-Gyu;Kim Yun-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.2 s.86
    • /
    • pp.281-290
    • /
    • 2005
  • This paper presents experimental and analytical studies on long-term behavior of square CFT columns under central axial loading. Two loading cases are considered; (1) the load applied only at the inner concrete of the column and (2) the load applied simultaneously on both the concrete and the steel tube. Four specimens of square CFT columns were tested under the two loading cases, and basic creep test for two concrete specimens was performed to find out the creep properties of the inner concrete. Three-dimensional finite element analysis models were established and verified with the experimental results. The verification shows that the prediction for the long-term behavior of actual square CFT columns is possible from the three dimensional finite element modeling considering the bond behavior between steel tube and inner concrete. Also, experimental results and numerical calculations revealed that the bond stress Induced by the confinement pressure as well as the slip between inner concrete and steel tube were increased with time In the first loading case. However, the confinement by the loading Plate was decreased with time while increasing confinement effect by the steel tube was observed over time. In contrast no confinement effects occur in the second loading case.

Effects of Corrugated GFRP Shear Connector Width and Pitch on In-plane Shear Behavior of Insulated Concrete Sandwich Wall Panels (CSWP) (파형 GFRP 전단연결재의 폭 및 너비에 따른 중단열 벽체의 면내전단거동)

  • Jang, Seok-Joon;Oh, Tae-Sik;You, Young-Chan;Kim, Ho-Royng;Yun, Hyun-Do
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.4
    • /
    • pp.421-428
    • /
    • 2014
  • This paper describes the experimental results of insulated concrete sandwich wall panels (CSWP) with corrugated glass fiber-reinforced polymer (GFRP) shear connectors under in-plane shear loading. Corrugated GFRP shear connectors were used to improve the thermal property of insulated CSWP and to achieve composite action between the interior and exterior concrete wall panels. Test specimens were consist of three concrete panels with two insulation layers between concrete panels and middle concrete panels was loaded in the direction of gravity. To evaluate the effects of insulation types (extruded polystyrene, XPSS and expanded polystyrene, EPS), shear connector pitch (300 and 400 mm) and width (10 and 15 mm) on in-plane shear behavior of insulted CSWP, failure mode and shear flow-average relative slip relationship of specimens were investigated. Test results indicate that the bond stress between concrete panel and insulation is considerable initially. Especially in case of insulated CSWP without shear connector, initial stiffness of CSWP with XPSS is superior to that of CSWP with EPS. The shear connector's contribution to in-plane shear performance of insulated CSWP depends on the type of insulation.