• Title/Summary/Keyword: bond material

Search Result 847, Processing Time 0.027 seconds

Chemical Properteis and Contact Angle on SiOC (SiOC 박막의 접촉각과 화학적 특성의 상관성)

  • Oh, Teresa;Kim, Hong-Bae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.205-205
    • /
    • 2007
  • The SiOC film of carbon centered system was prepared using bistrimethylsilylmethane and oxygen mixed precursor by the chemical vapor deposition. The chemical properties of the SiOC film were analyzed by the I-V measurement and FTIR spectra. The main bond of 950~1200 cm-1 was composed of the Si-C, Si-O-C and Si-O bonds. The leakage current of the SiOC film increased with the increasing of the carbon content, and the drift of the current was similar to the Si-O-C bond content.

  • PDF

Experimental Study on Bond Behavior of Retrofit Materials by Bond-Shear Test (부착전단 실험에 의한 보강재료의 부착거동 실험 연구)

  • Ha, Ju-Hyung;Yi, Na-Hyun;Cho, Yun-Gu;Kim, Jang-Ho Jay
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.1
    • /
    • pp.45-52
    • /
    • 2012
  • A variety of retrofit material such as CFRP, GFRP, and PolyUrea have been developed for strengthening RC structures and infrastructures. From previously reported research results, the capacity of strengthened concrete structures was dictated by the behavior of the interface between retrofit material and concrete. In this study, bond-shear test was carried out to estimate the bond behavior between retrofit material and concrete using a newly developed test grip. The test results of load and slip relation and energy absorption capacity of each retrofit material were obtained. These test results will provide basic information for retrofit material selection to achieve target retrofit performance.

A STUDY ON THE EFFECT OF AMALGAM CAVITY LINER APPLICATION ON THE MARGINAL LEAKAGE AND RETENTION OF AMALGAM RESTORATIONS (Amalgambond Liner의 도포가 amalgam 수복재의 변연누출과 유지력에 미치는 영향에 관한 연구)

  • Kim, Tae-Sung;Kim, Jong-Soo;Kim, Yong-Kee
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.23 no.4
    • /
    • pp.800-817
    • /
    • 1996
  • In this study, we tried to evaluate the effect of Amalgambond liner application on the degree of marginal leakage and retention of amalgam restoration by comparing with that of the Copalite and All-bond 2. The results obtained from this experiment were as follows; 1. Tensile strength representing the bond between amalgam and tooth structure was the highest in Amalgambond, and All-Bond 2, Copalite in descending order. There were statistically significant difference between each group(P<0.05). 2. The degree of microleakage in Amalgambond was lower than that of All-Bond 2, and Copalite, but no stastically significant difference could be found (P>0.05). 3. The liner such as Amalgambond or All-Bond 2 were evaluated to be superior to the conventional Copalite in bond strength as well as in microleakage. But the result of this study could not show the superiority of one material over the others; Amalgambond and All-bond 2. Besides the results of the study, other factors, such as practical convenience, should be considered in determining the selection of material. The support of welldesigned clinical studies on this subject are in demand.

  • PDF

Effectiveness of bond strength between normal concrete as substrate and latex-modified sand concrete reinforced with sisal fibers as a repair material

  • Oday Z. Jaradat;Karima Gadri;Bassam A. Tayeh;Ahmed M. Maglad;Abdelhamid Guettala
    • Advances in concrete construction
    • /
    • v.15 no.6
    • /
    • pp.431-444
    • /
    • 2023
  • This study investigated the use of latex-modified sand concrete reinforced with sisal fibers (LMSC) as a repair material. Notably, no prior research has explored the application of LMSC for this purpose. This paper examines the interface bond strength and the type of failure between LMSC as a repair material and the normal concrete (NC) substrate utilising four different surfaces: without surface preparation as a reference (SR), hand hammer (HA), sandblasted (SB), and grooved (GR). The bond strength was measured by bi-surface shear, splitting tensile, and pull-off strength tests at 7, 28, and 90 days. Scanning electron microscopy analysis was also performed to study the microstructure of the interface between the normal concrete substrate and the latex-modified sand concrete reinforced with sisal fibers. The results of this study indicate that LMSC has bonding strength with NC, especially for HR and SB surfaces with high roughness. Therefore, substrate NC surface roughness is essential in increasing the bonding strength and adhesion. Eventually, The LMSC has the potential to repair and rehabilitate concrete structures.

Effect of ultrasonic cleaning on the bond strength of fiber posts in oval canals filled with a premixed bioceramic root canal sealer

  • Bengoa, Fernando Pena;Arze, Maria Consuelo Magasich;Noguera, Cristobal Macchiavello;Moreira, Luiz Felipe Nunes;Kato, Augusto Shoji;Da Silveira Bueno, Carlos Eduardo
    • Restorative Dentistry and Endodontics
    • /
    • v.45 no.2
    • /
    • pp.19.1-19.8
    • /
    • 2020
  • Objective: This study aimed to evaluate the effect of ultrasonic cleaning of the intracanal post space on the bond strength of fiber posts in oval canals filled with a premixed bioceramic (Bio-C Sealer [BIOC]) root canal sealer. Materials and Methods: Fifty premolars were endodontically prepared and divided into 5 groups (n = 10), based on the type of root canal filling material used and the post space cleaning protocol. A1: gutta-percha + AH Plus (AHP) and post space preparation with ultrasonic cleaning, A2: gutta-percha + BIOC and post space preparation with ultrasonic cleaning, B1: gutta-percha + AHP and post space preparation, B2: gutta-percha + BIOC and post space preparation, C: control group. Fiber posts were cemented with a self-adhesive luting material, and 1 mm thick slices were sectioned from the middle and cervical third to evaluate the remaining filling material microscopically. The samples were subjected to a push-out test to analyze the bond strength of the fiber post, and the results were analyzed with the Shapiro-Wilk, Bonferroni, Kruskal-Wallis, and Mann-Whitney tests (p < 0.05). Failure modes were evaluated using optical microscopy. Results: The results showed that the fiber posts cemented in canals sealed with BIOC had lower bond strength than those sealed with AHP. The ultrasonic cleaning of the post space improved the bond strength of fiber posts in canals sealed with AHP, but not with BIOC. Conclusions: BIOC decreased the bond strength of fiber posts in oval canals, regardless of ultrasonic cleaning.

Push-out bond strength and marginal adaptation of apical plugs with bioactive endodontic cements in simulated immature teeth

  • Maria Aparecida Barbosa de Sa;Eduardo Nunes ;Alberto Nogueira da Gama Antunes ;Manoel Brito Junior ;Martinho Campolina Rebello Horta ;Rodrigo Rodrigues Amaral;Stephen Cohen ;Frank Ferreira Silveira
    • Restorative Dentistry and Endodontics
    • /
    • v.46 no.4
    • /
    • pp.53.1-53.11
    • /
    • 2021
  • Objectives: This study evaluates the bond strength and marginal adaptation of mineral trioxide aggregate (MTA) Repair HP and Biodentine used as apical plugs; MTA was used as reference material for comparison. Materials and Methods: A total of 30 single-rooted teeth with standardized, artificially created open apices were randomly divided into 3 groups (n = 10 per group), according to the material used to form 6-mm-thick apical plugs: group 1 (MTA Repair HP); group 2 (Biodentine); and group 3 (white MTA). Subsequently, the specimens were transversely sectioned to obtain 2 (cervical and apical) 2.5-mm-thick slices per root. Epoxy resin replicas were observed under a scanning electron microscope to measure the gap size at the material/dentin interface (the largest and smaller gaps were recorded for each replica). The bond strength of the investigated materials to dentin was determined using the push-out test. The variable bond strengths and gap sizes were evaluated independently at the apical and cervical root dentin slices. Data were analyzed using descriptive and analytic statistics. Results: The comparison between the groups regarding the variables' bond strengths and gap sizes showed no statistical difference (p > 0.05) except for a single difference in the smallest gap at the cervical root dentin slice, which was higher in group 3 than in group 1 (p < 0.05). Conclusions: The bond strength and marginal adaptation to root canal walls of MTA HP and Biodentine cement were comparable to white MTA.

Flexural behavior and durability evaluation of flexural members manufactured using prepacked DFRCC material (Prepacked DFRCC 재료로 제작된 휨 부재의 휨 거동 및 내구성 평가)

  • Kim, Jang-Ho;Lim, Yoon-Mook;Hong, Jong-Seok;Lee, Kyung-Min;Kim, Yoon-Ho
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.57-60
    • /
    • 2006
  • The purpose of this study is to assess performance of prepacked DFRCC material compared with the DFRCC material which is made by using general mixing method. From 4r-point bending test, bond strength test and chlorine ion penetration test, flexural stress, -deflection relations, bond strengths, and durability assessment have been obtained. From the experiments, premixed DFRCC shows relatively good performance.

  • PDF

The Experimental Study on the Suggestion for Bond Strength Standard of Sprayed Fire Resistive Materials Used at the Substation Steel Structures (변전소 철골 내화뿜칠 부착강도 기준설정에 관한 실험적 연구)

  • Park, Dong-Su;Joung, Won-Seoup
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.1
    • /
    • pp.128-137
    • /
    • 2014
  • Sprayed fire resistive materials are mainly used at steel structures to satisfy fireproof construction standard. However, the regulations on bond strength have been not considered with the exception of structures in the nuclear power plants, although it is an important factor showing material properties. Therefore, this paper suggested guidelines for bond strength of sprayed fire resistive materials used in the substation, by measuring bond strength according to aging of structures and impact loading considering environment of substations. It is judged that the bond strength suggested in this paper is the minimum value because it was measured from specimens widely used.

Investigation of rate dependent shear bond properties of concrete masonry mortar joints under high-rate loading

  • John E. Hatfield;Genevieve L. Pezzola;John M. Hoemann;James S. Davidson
    • Computers and Concrete
    • /
    • v.33 no.5
    • /
    • pp.519-533
    • /
    • 2024
  • Many materials including cementitious concrete-type materials undergo material property changes during high-rate loading. There is a wealth of research regarding this phenomenon for concrete in compression and tension. However, there is minimal knowledge about how mortar material used in concrete masonry unit (CMU) construction behaves in high-rate shear loading. A series of experiments was conducted to examine the bond strength of mortar bonded to CMU units under high-rate shear loading. A novel experimental setup using a shock tube and dynamic ram were used to load specially constructed shear triplets in a double lap shear configuration with no pre-compression. The Finite Element Method was leveraged in conjunction with data from the experimental investigation to establish if the shear bond between concrete masonry units and mortar exhibits any rate dependency. An increase in shear bond strength was observed when loaded at a high strain rate. This data indicates that the CMU-mortar bond exhibits a rate dependent strength change and illustrates the need for further study of the CMU-mortar interface characteristics at high strain rates.

Research on the Bond Behavior of FRP Rebars subjected to Cyclic Loading (반복하중을 받는 FRP 보강근의 부착성능에 대한 연구)

  • Chang, Mun-Suk;Lee, Jung-Yoon;Park, Ji-Sun;Park, Young-Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.205-208
    • /
    • 2006
  • The use of Fiber Reinforced Polymer (FRP) bars has been gaining popularity in the civil engineering community, as an alternative material to steel reinforcement, for their noncorrosive nature and high strength-to-weight ratio. Good performance of reinforced concrete requires adequate interfacial bond between the reinforcing material and the concrete because the load applied must be transferred from the matrix to the reinforcement. Although studies on the FRP bond behavior under monotonic loading has been reported by many, there are very little work done under cyclic loading. In this paper, we present the experimental study on the bond behavior of three different types of FRP rebars subjected to four different cyclic loading conditions.

  • PDF