• Title/Summary/Keyword: bond evaluation

Search Result 403, Processing Time 0.025 seconds

Seismic Performance Assessment of Existing Circular Sectional RC Bridge Columns according to Lap-splice Length of Longitudinal Bars (축방향철근의 겹침이음길이에 따른 원형 RC교각의 내진성능평가)

  • Park, Kwang Soon;Seo, Hyeong Yeol;Kim, Tae-Hoon;Kim, Ick Hyun;Sun, Chang Ho
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.18 no.4
    • /
    • pp.201-212
    • /
    • 2014
  • The plastic hinge region of RC pier ensures its nonlinear behavior during strong earthquake events. It is assumed that the piers secure sufficient strength and ductility in order to prevent the collapse of the bridge during strong earthquake. However, the presence of a lap-splice of longitudinal bars in the plastic hinge region may lead to the occurrence of early bond failure in the lap-splice zone and result in significant loss of the seismic performance. The current regulations for seismic performance evaluation limit the ultimate strain and displacement ductility considering the eventual presence of lap-splice, but do not consider the lap-splice length. In this study, seismic performance test and analysis are performed according to the cross-sectional size and the lap-splice length in the case of longitudinal bars with lap-splice located in the plastic hinge region of existing RC bridge columns with circular cross-section. The seismic behavioral characteristics of the piers are also analyzed. Based upon the results, this paper presents a more reasonable seismic performance evaluation method considering the lap-splice length and the cross-sectional size of the column.

Analysis of the Flexural Strength of Reinforced Concrete Beams Strengthened with Prestressed Carbon Fiber-Reinforced Polymer Plates (CFRP판으로 프리스트레싱 보강된 RC 보의 휨강도 해석)

  • Woo, Sang-Kyun;Hong, Ki-Nam;Han, Sang-Hoon;Song, Young-Chul
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.1
    • /
    • pp.181-192
    • /
    • 2007
  • The purpose of this study is to analyse and compare experimentally flexural behavior of RC beams strengthened with CFRP plates by different methods, and finally suggest the evaluation equations of flexural capacity of RC beams with the aim of application of prestressed CFRP strengthening. The experimental parameters are compressive strength, reinforcement ratio, prestressing level and strengthening methods. The non-prestressed specimens failed on account of separation of the plates from the beams due to premature de-bonding, while most of the prestressed specimens failed due to CFRP plate fracture. The evaluation equations of flexural capacity of RC beams is suggested and these equations have a good reliability in predicting flexural strength of RC beams.

Structure Behavior Evaluation of Beams composited with Steel and Reinforced Concrete (철근콘크리트와 강을 합성한 복합 단면보의 구조거동평가)

  • Kim, In Seok;Kim, Hak Soo
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.5
    • /
    • pp.665-673
    • /
    • 2008
  • The composite structures of steel and reinforced concrete, which have been widely used in large-scale concrete structures, werestudied to investigate the cause of unexpected cracks and to verify the composite actions between the two materials. Vertical stiffeners between flanges, studs and dowel bars, stirrups, and concrete strength were chosen as experimental variables in afour-point loading test. The results showed that the vertical stiffener prevented not only the local web buckling, but also bond failures between steel and concrete. It increased the flexural resistance (fracture loads) due to the composite action of two materials, compared withthose of any experimental variable. However, the composite behavior of steel reinforced concrete beam was not affected seriously by additional studs, dowel bars, stirrups, and concrete strength.

Response Analysis and crack Pattern Evaluation of Two Story Masonry Structure under the seismic Load (2층 조적조의 지진하중에 의한 거동해석 및 균열평가)

  • 김희철;이경훈
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.2 no.4
    • /
    • pp.179-190
    • /
    • 1998
  • All brick masonry buildings are constructed without any structural limitation under earthquake load, in Korea. However, it is necessary to evaluate response for seismic loads since the number of earthquake occurances in Korea is increasing. In this paper, the load resisting capacities of brick masonry buildings are investigated by finite element analysis method and the response due to seismic load are analyzed by applying 0.12g earthquake load. It was observed that the two story masonry building is not safe under the 0.12g earthquake load, especially at the first floor. The cracks were occurred under the bond beam and around the openings due to the stress concentration.

  • PDF

Nondestructive Evaluation of Adhesive Bonding Quality by Measurements of Peak Amplitude of Simulated Stress Wave (모의 음향 방출 신호의 Peak Amplitude측정을 통한 복합 재료 접합부의 비파괴평가)

  • Son, Y.H.;Lee, J.O.;Lee, S.H.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.15 no.2
    • /
    • pp.357-363
    • /
    • 1995
  • Disbond size of adhesively bonded single lap and double lap joints CFRP composite specimens has been evaluated using acousto-ultrasonic(AU) technique. Frequency spectra for all specimens were obtained by measuring peak amplitude of the stress wave propagated through the bond-lines. By analyzing these frequency spectra, peak amplitude was found to be proportional to fractional bonding area and to be maxima at the fundamental and the third order higher harmonic frequencies of specimen thickness mode. The disbond size can be evaluated quantitatively and this technique can be applied to real structures if the reference specimens are prepared in advancve.

  • PDF

Seismic Performance Evaluation of Reinforced Concrete Buildings Strengthened by Embedded Steel Frame (내부 매입형 철골조로 보강된 철근콘크리트 건물의 내진 성능평가)

  • Kim, Seonwoong;Lee, Kyungkoo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.24 no.1
    • /
    • pp.29-37
    • /
    • 2020
  • This study is to investigate the effect of a retrofitted reinforced concrete frame with non-seismic details strengthened by embedded steel moment frames with an indirect joint, which mitigates the problems of the direct joint method. First, full-scale experiments were conducted to confirm the structural behavior of a 2-story reinforced concrete frame with non-seismic details and strengthened by a steel moment frame with an indirect joint. The reinforced concrete frame with non-seismic details showed a maximum strength of 185 kN at an overall drift ratio of 1.75%. The flexural-shear failure of columns was governed, and shear cracks were concentrated at the beam-column joints. The reinforced concrete frame strengthened by the embedded steel moment frames achieved a maximum strength of 701 kN at an overall drift ratio of 1.5% so that the maximum strength was about 3.8 times that of the specimen with non-seismic details. The failure pattern of the retrofitted specimen was the loss of bond strength between the concrete and the rebars of the columns caused by a prying action of the bottom indirect joint because of lateral force. Furthermore, methods are proposed for calculation of the specified strength of the reinforced concrete frame with non-seismic details and strengthened by the steel moment frame with the indirect joint.

Effect of Strengthening amount and length of CFS on Flexural Behavior of RC Beams (탄소섬유쉬트의 보강량 및 정착길이가 RC보의 휨거동에 미치는 영향)

  • 신성우;반병렬;안종문;조인철;김영수;조삼재
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.04b
    • /
    • pp.579-584
    • /
    • 1998
  • The purpose of this study is to evaluate the flexural strengthening effects of RC beams reinforced with carbon fiber sheets (CFS) in variable of strengthening amount and anchorage length of CFS. This study can be summarized as follows. The CFS shares the tensile stress such as rebar during loading test. Also, as the strengthening amount of CFS is increased, the maximum flexural strength of RC beams reinforced with CFS is increased. Therefore, it is confirmed that the CFS's strengthening method is very effective to improve the flexural strength of RC beams. The maximum flexural strength of RC beams with CFS is determined by bond failure between CFS and concrete surface. So, the evaluation of CFS's strengthening effect can be calculated using the tensile stress of CFS which is peeling. When the anchorage length of CFS. But, in case of same anchorage length of CFS, when the strengthening amount of CFA is increased, the ductility is decreased. Therefore, it is considered that the anchorage of CFS in the end zone is necessary.

  • PDF

Experimental Evaluation of Shear Bonding Performance of Wood-Steel Composite Members (목재-강재 합성 부재의 전단 부착 성능에 대한 실험적 평가)

  • Park, Keum-Sung;Lee, Sang-Sup;Kwak, Myong-Keun
    • Journal of Korean Association for Spatial Structures
    • /
    • v.19 no.4
    • /
    • pp.53-60
    • /
    • 2019
  • In this study, an experimental study was carried out to evaluate the bond shear performance according to the shear connector between the glue-laminated timber and steel interface. Ten block shear specimens were fabricated according to the configuration of the adhesive surface of wood and steel. In addition, four test specimens were produced according to the main variable shape of the wood-concrete shear connector. As a result of the block shear test, the shear strength of the steel-wood adhesive is shown to have a shear performance greater than the wood-wood shear strength. As a result of the push-out test according to the shape of the shear connector, the shear strength increased linearly with the attachment area. The complete composite behavior between the glued-laminated timber and the steel can be secured.

Load carrying capacity of deteriorated reinforced concrete columns

  • Tapan, Mucip;Aboutaha, Riyad S.
    • Computers and Concrete
    • /
    • v.6 no.6
    • /
    • pp.473-490
    • /
    • 2009
  • This paper presents a new methodology to evaluate the load carrying capacity of deteriorated non-slender concrete bridge pier columns by construction of the full P-M interaction diagrams. The proposed method incorporates the actual material properties of deteriorated columns, and accounts for amount of corrosion and exposed corroded bar length, concrete loss, loss of concrete confinement and strength due to stirrup deterioration, bond failure, and type of stresses in the corroded reinforcement. The developed structural model and the damaged material models are integrated in a spreadsheet for evaluating the load carrying capacity for different deterioration stages and/or corrosion amounts. Available experimental and analytical data for the effects of corrosion on short columns subject to axial loads combined with moments (eccentricity induced) are used to verify the accuracy of proposed model. It was observed that, for the limited available experimental data, the proposed model is conservative and is capable of predicting the load carrying capacity of deteriorated reinforced concrete columns with reasonable accuracy. The proposed analytical method will improve the understanding of effects of deterioration on structural members, and allow engineers to qualitatively assess load carrying capacity of deteriorated reinforced concrete bridge pier columns.

Experimental Study on Evaluation of Abrasion Resistance of Concrete Irrigation Facilities (콘크리트 수리구조물의 수중마모저항성 평가기술에 관한 실험적 연구)

  • Kim, Meyongwon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.60 no.3
    • /
    • pp.123-133
    • /
    • 2018
  • The purpose of this paper is to propose an experimental method to evaluate the resistance of abrasion about 24 MPa, 27 MPa, and 30 MPa compressive strength. These strength are used in the design and construction of concrete hydraulic structures in Korea. The mixing ratios of the ready mixed concrete strengths were investigated countrywide and set the representative mixture proportion ratios of the nine mixed types of OPC, FA and BFS. After making and curing the test specimens, the underwater abrasion test was performed. ASTM C 1138 International Standard was used to fabricate the test equipment, and the surface abrasion resistance of the specimen was tested using the test equipment. In the case of OPC, the 30% abrasion resistance improvement effect was observed at 72 hours as the water-binder ratio decreased. That was reason the coated cement bond strength of the specimen was strong. In the case of BFS and FA, it was improved by 9.9% and 3.8%, respectively, at 72 hours as the water-binder ratio decreased. It was due to the characteristics of the latent hydraulic and pozzolanic reactions. Generally, the relative abrasion resistance of concrete can be evaluated at 24 hours. However, in case of low strength (under 24 MPa), the surface mortar layer wears much faster at the first 12 hours, so it can be considered to evaluate the relative abrasion loss rate at this point.