• Title/Summary/Keyword: bond effect

Search Result 1,648, Processing Time 0.029 seconds

Bond-slip behaviour of H-shaped steel embedded in UHPFRC

  • Huang, Zhenyu;Huang, Xinxiong;Li, Weiwen;Chen, Chufa;Li, Yongjie;Lin, Zhiwei;Liao, Wen-I
    • Steel and Composite Structures
    • /
    • v.38 no.5
    • /
    • pp.563-582
    • /
    • 2021
  • The present study experimentally and analytically investigated the push-out behaviour of H-shaped steel section embedded in ultrahigh-performance fibre-reinforced concrete (UHPFRC). The effect of significant parameters such as the concrete types, fibre content, embedded steel length, transverse reinforcement ratio and concrete cover on the bond stress, development of bond stress along the embedded length and failure mechanism has been reported. The test results show that the bond slip behaviour of steel-UHPFRC is different from the bond slip behaviour of steel-normal concrete and steel-high strength concrete. The bond-slip curves of steel-normal concrete and steel-high strength concrete exhibit brittle behaviour, and the bond strength decreases rapidly after reaching the peak load, with a residual bond strength of approximately one-half of the peak bond strength. The bond-slip curves of steel-UHPFRC show an obvious ductility, which exhibits a unique displacement pseudoplastic effect. The residual bond strength can still reach from 80% to 90% of the peak bond strength. Compared to steel-normal concrete, the transverse confinement of stirrups has a limited effect on the bond strength in the steel-UHPFRC substrate, but a higher stirrup ratio can improve cracking resistance. The experimental campaign quantifies the local bond stress development and finds that the strain distribution in steel follows an exponential rule along the steel embedded length. Based on the theory of mean bond and local bond stress, the present study proposes empirical approaches to predict the ultimate and residual bond resistance with satisfactory precision. The research findings serve to explain the interface bond mechanism between UHPFRC and steel, which is significant for the design of steel-UHPFRC composite structures and verify the feasibility of eliminating longitudinal rebars and stirrups by using UHPFRC in composite columns.

Factors Influencing S-O Bond and C-O Bond Cleavages in the Reactions of 2,4-Dinitrophenyl X-Substituted Benzenesulfonates with Various Nucleophilic Reagents

  • 엄익환;김정주;김명진;권동숙
    • Bulletin of the Korean Chemical Society
    • /
    • v.17 no.4
    • /
    • pp.353-357
    • /
    • 1996
  • Second-order rate constants have been measured spectrophotometrically for the reaction of 2,4-dinitrophenyl X-substituted benzenesulfonates with Z-substituted phenoxides in absolute ethanol at 25.0±0.1 ℃. The nucleophilic substitution reaction gives both S-O bond and C-O bond cleavage products. The extent of S-O bond cleavage increases significantly with increasing electron withdrawing ability of the sulfonyl substitutent X, while that of the C-O bond cleavage is independent on the electronic effect of the substituent. On the contratry, the effect of the substituent Z in the nucleophilic phenoxide is more significant for the C-O bond cleavage than for the S-O bond cleavage. Aminolyses of 2,4-dinitrophenyl benzenesulfonate (1) with various 1°, 2° and 3°amines have revealed that steric effect is little important. The extent of S-O bond cleavage increases with increasing the basicity of the amines, but decreases with increasing the basicity of the nucleophilic aryloxides, indicating that the HSAB principle is not always operative. Besides, reactant and solvent polarizability effect has also been found to be an important factor in some cases but not always to influence the reaction site.

Effect of moisture and drying time on the bond strength of the one-step self-etching adhesive system

  • Lee, Yoon;Park, Jeong-Won
    • Restorative Dentistry and Endodontics
    • /
    • v.37 no.3
    • /
    • pp.155-159
    • /
    • 2012
  • Objectives: To investigate the effect of dentin moisture degree and air-drying time on dentin-bond strength of two different one-step self-etching adhesive systems. Materials and Methods: Twenty-four human third molars were used for microtensile bond strength testing of G-Bond and Clearfil $S^3$ Bond. The dentin surface was either blot-dried or air-dried before applying these adhesive agents. After application of the adhesive agent, three different air drying times were evaluated: 1, 5, and 10 sec. Composite resin was build up to 4 mm thickness and light cured for 40 sec with 2 separate layers. Then the tooth was sectioned and trimmed to measure the microtensile bond strength using a universal testing machine. The measured bond strengths were analyzed with three-way ANOVA and regression analysis was done (p = 0.05). Results: All three factors, materials, dentin wetness and air drying time, showed significant effect on the microtensile bond strength. Clearfil $S^3$ Bond, dry dentin surface and 10 sec air drying time showed higher bond strength. Conclusions: Within the limitation of this experiment, air drying time after the application of the one-step self-etching adhesive agent was the most significant factor affecting the bond strength, followed by the material difference and dentin moisture before applying the adhesive agent.

Effect of bond slip on the performance of FRP reinforced concrete columns under eccentric loading

  • Zhu, Chunyang;Sun, Li;Wang, Ke;Yuan, Yue;Wei, Minghai
    • Computers and Concrete
    • /
    • v.24 no.1
    • /
    • pp.73-83
    • /
    • 2019
  • Concrete reinforced with fiber reinforced polymer (FRP) bars (FRP-RC) has attracted a significant amount of research attention in the last three decades. A limited number of studies, however, have investigated the effect of bond slip on the performance of FRP-RC columns under eccentric loading. Based on previous experimental study, a finite-element model of eccentrically loaded FRP-RC columns was established in this study. The bondslip behavior was modeled by inserting spring elements between FRP bars and concrete. The improved Bertero-Popov-Eligehausen (BPE) bond slip model with the results of existing FRP-RC pullout tests was introduced. The effect of bond slip on the entire compression-bending process of FRP-RC columns was investigated parametrically. The results show that the initial stiffness of bond slip is the most sensitive parameter affecting the compression-bending performance of columns. The peak bond stress and the corresponding peak slip produce a small effect on the maximum loading capacity of columns. The bondslip softening has little effect on the compression-bending performance of columns. The sectional analysis revealed that, as the load eccentricity and the FRP bar diameter increase, the reducing effect of bond slip on the flexural capacity becomes more obvious. With regard to bond slip, the axial-force-bending-moment (P-M) interaction diagrams of columns with different FRP bar diameters show consistent trends. It can be concluded from this study that for columns reinforced with large diameter FRP bars, the flexural capacity of columns at low axial load levels will be seriously overestimated if the bond slip is not considered.

Bond Characteristics of Reinforcing Bars Embeded in High Strength Concrete (고강도 콘크리트에 매립된 철근의 부착특성)

  • 최종수;유석형;안종문;이광수;신성우
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1994.10a
    • /
    • pp.319-324
    • /
    • 1994
  • Bond test was carried out to assess the effect of several variables on bond characteristics between reinforcing bar and concrete. Key variables are concrete compressive strength(low, medium high, and ultra-high), bar diameter(13mm and 22mm), and concrete cover(25mm; 1-inch, 38mm; 1.5-inch, and 51mm; 2-inch). Confining effect and bar spacing are not taken into account. Thirty-two specimens subjected to uniaxial tension were tested under hypothesis uniform bond stress distribution along the reinforcing bar embeded in concrete. Test results(ultimate bond stress) were compared with bond and development provisions of the ACI building Code(ACl 318-89) and local bond stress versus slip relationship diagram represented to show effect of the above variables.

  • PDF

A new reinforcing steel model with bond-slip

  • Kwak, H.G.;Filippou, F.C.
    • Structural Engineering and Mechanics
    • /
    • v.3 no.4
    • /
    • pp.299-312
    • /
    • 1995
  • A new reinforcing steel model which is embedded inside a concrete element and also accounts for the effect of bond-slip is developed. Unlike the classical bond-link or bond-zone element using double nodes, the proposed model is considering the bond-slip effect without taking double nodes by incorporation of the equivalent steel stiffness. After calculation of nodal displacements, the deformation of steel at each node can be found through the back-substitution technique from the first to the final steel element using a governing equation constructed based on the equilibrium at each node of steel and the compatibility condition between steel and concrete. This model results in significant savings in the number of nodes needed to account for the effect of bond-slip, in particular, when the model is used for three dimensional finite element problems. Moreover a new nonlinear solution scheme is developed in connection with this model. Finally, correlation studies between analytical and experimental results and several parameter studies are conducted with the objective to establish the validity of the proposed model.

A Study on Interfacial Bond Capacity of Deformed Bars to Concrete : Top Bars and Epoxy-Coated Bars (콘크리트와 이형철근의 계면 부착성능 : 상단철근 및 에폭시도막철근 효과)

  • 강석원;홍건호;정일영
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.10a
    • /
    • pp.204-209
    • /
    • 1995
  • The influence of the interfacial properties on the bond capacity of reinforcing bars to concrete is studied in this paper. In this study, the deterioration of the interfacial bond capacity when top-cast bars or epoxy-coated bars are used is examined. The effect of such variables on bond capacity in reinforced concrete is studied by experiment which use beam-end specimens. The main objective of this study is that comparing the test results and the requirements in ACI 318-89 code. the verification of the factor in ACI code is also presented in this paper. The results of the test show that "top bar effect" is considerably affected by the slump of fresh concrete, so the influence of slump shoud be taken into account for top bar effect factor in code. Test results also shows that the bond-slip curve of the epoxy-caoted bars is similiar to that of the uncoated and bond strength is reduced about 15% and that coating thickness seems to influence the bond strength deterioration.rioration.

  • PDF

Studies on the vibration mode of the cantilevered beam with Piezoelectric Element (지능재료가 부착된 외팔보의 진동모형에 관한 연구)

  • 차진훈
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.204-209
    • /
    • 2000
  • It is the first step to establish the exact vibration model of the structure when constructing the smart structure with desired vibration scheme. In this paper, vibration model of beam with piezoelectric element boned on the surface is presented by considering the thickness effect of the bond layer. In contrast to the previous papers which neglect the effect of bond layer, the presented vibration model considers the effect of bond layer assuming the prefect bond condition. The perfect bond condition is tested by comparing the controllability of beams with three types of bond layer. An optimal vibration control of the beam can be performed when there exists perfect-bond condition between the piezoelectric element and the main structure.

  • PDF

Effect of additional etching and ethanol-wet bonding on the dentin bond strength of one-step self-etch adhesives

  • Ahn, Joonghee;Jung, Kyoung-Hwa;Son, Sung-Ae;Hur, Bock;Kwon, Yong-Hoon;Park, Jeong-Kil
    • Restorative Dentistry and Endodontics
    • /
    • v.40 no.1
    • /
    • pp.68-74
    • /
    • 2015
  • Objectives: This study examined the effects of additional acid etching on the dentin bond strength of one-step self-etch adhesives with different compositions and pH. The effect of ethanol wetting on etched dentin bond strength of self-etch adhesives was also evaluated. Materials and Methods: Forty-two human permanent molars were classified into 21 groups according to the adhesive types (Clearfil SE Bond [SE, control]; G-aenial Bond [GB]; Xeno V [XV]; Beauti Bond [BB]; Adper Easy Bond [AE]; Single Bond Universal [SU]; All Bond Universal [AU]), and the dentin conditioning methods. Composite resins were placed on the dentin surfaces, and the teeth were sectioned. The microtensile bond strength was measured, and the failure mode of the fractured specimens was examined. The data were analyzed statistically using two-way ANOVA and Duncan's post hoc test. Results: In GB, XV and SE ($pH{\leq}2$), the bond strength was decreased significantly when the dentin was etched (p < 0.05). In BB, AE and SU (pH 2.4 - 2.7), additional etching did not affect the bond strength (p > 0.05). In AU (pH = 3.2), additional etching increased the bond strength significantly (p < 0.05). When adhesives were applied to the acid etched dentin with ethanol-wet bonding, the bond strength was significantly higher than that of the no ethanol-wet bonding groups, and the incidence of cohesive failure was increased. Conclusions: The effect of additional acid etching on the dentin bond strength was influenced by the pH of one-step self-etch adhesives. Ethanol wetting on etched dentin could create a stronger bonding performance of one-step self-etch adhesives for acid etched dentin.

The Investigation on Bond characteristics of Reinforced Concrete (철근콘크리트의 부착특성에 관한 연구)

  • 신성우;최종수;이광수
    • Magazine of the Korea Concrete Institute
    • /
    • v.7 no.1
    • /
    • pp.117-125
    • /
    • 1995
  • Bond test was carried out to assess the effect of several variables on bond characteristics between reinforcing bar and concrete. Key variables are concrete compressive strength($f_c$'=340, 460, 6513, 904kg/$cm^2$), concrete cover (25, 38, 51, 105, IlOmm), and bar diameter(Dl3 and D22). Confining effect and bar spacing are not taken into account. Thirty-two specimens subjected to uniaxial tension were tested under hypothesis uniform bond stress distribution along the reinforcing bar embeded in concrete. Failure mode was examined and local bond stress versus slip relationship diagrams were represented to show effect of the above variables, also test results(u1timate bond stress) were compared with bond and development provisions of the ACI Building Code(AC1 318-89) and proposed equations from previous research. According to analysis, borld stress and ultimate bond stress increased although compressive strength increased beyond the ACI Building Code upper limit. Therefore in calculating development length. compressive strength effect(exceeding 700kg /$cm^2$) should be accounted.