• Title/Summary/Keyword: bond angle

Search Result 194, Processing Time 0.03 seconds

Microstructure of Vitreous Bonded Grinding Wheel (유리질 결합 공구의 미세구조)

  • Yang, Jin
    • Korean Journal of Materials Research
    • /
    • v.9 no.2
    • /
    • pp.111-116
    • /
    • 1999
  • The microstructure of vitreous bonded abrasives, which are used as the essential materials in the precise grinding, was investigated theoretically using two particle model. In this paper, a general equation applicable for a case in which there is a gap between abrasive grits is suggested. As a result, it was known that both the volume ratio of grit to glassy bond(V\ulcorner/V\ulcorner) and porosity(V\ulcorner) are the function of $\alpha$(the ratio of distance between grit to diameter of grit) and $\theta$(the angle from the center of pore to that of grit). Because the value $\alpha$ and $\theta$ can be get easily by using these suggested equations, the microstructure could be explained quantitatively. Also the raised error with the increasing amount of bond was modified by the simple assumption. As a result, in that case, both V\ulcorner/V\ulcorner and V\ulcorner were known to be the function of $\alpha$ and $\theta$(the ratio diameter of pore to that of grit).

  • PDF

Comparison of Structural Types of Proline Pentamer by Quantum Chemical Calculation (QCC)

  • Jae-Ho Sim
    • International Journal of Advanced Culture Technology
    • /
    • v.11 no.2
    • /
    • pp.323-329
    • /
    • 2023
  • In this study, Proline pentamer model was used to investigate change in the dihedral angle, intramolecular hydrogen bonding and formation energies during structural optimization. L-Proline (LP, as an imino acid residue) pentamers having four conformation types [β: φ/ψ=t−/t+, α: φ/ψ=g−/g−, PPII: φ/ψ=g−/t+ and Plike: φ/ψ= g−/g+] were carried out by QCC [B3LYP/6-31G(d,p)]. The optimized structure and formation energy were examined for designated structure. In LP, P-like and PPII types did not change by optimization, and β types were transformed into PPII having no H-bond independently of the designated ψ values. PPII was more stable than P-like by about 2.2 kcal/mol/mu. The hydrogen bond distances of d2(4-6) type H-bonds were 1.94 - 2.00Å. In order to understand the processes of the transformations, the changes of φ/ψ, distances of NH-OC (dNH/CO) and formation energies (ΔE, kcal/mol/mu) were examined.

Deposition of Super Hydrophobic a-C:F Films by Dielectric Barrier Discharge at Atmospheric Pressure

  • Kim, Duk-Jae;Kim, Yoon-Kee;Han, Jeon-Geon
    • Journal of the Korean institute of surface engineering
    • /
    • v.44 no.2
    • /
    • pp.50-54
    • /
    • 2011
  • Hydrophobic a-C:F film was coated on polycarbonate film with $CF_4$, $C_2F_6$ and HFC ($C_2F_4H_2$) gas in helium discharge generated by 5~100 kHz AC power supply at atmospheric pressure and room temperature. The highest water contact angle of the a-C:F film formed with $He/C_2F_6$ mixed gas is $155^{\circ}$. X-ray photoelectron spectrum showed that there was 40% of C-$CF_3$ bond at the surface of the super hydrophobic film. The contact angle and deposition rate were decreased with increasing substrate temperature. The contact angle was generally increased with the surface roughness of the film. The contact angle was high when the surface microstructure of the film was fine and sharp at the similar roughness and chemical composition of the surface.

The effect of silane treatment timing and saliva contamination on shear bond strength of resin cement to porcelain (Silane의 처리시기와 타액오염이 도재-레진 시멘트의 전단 결합강도에 미치는 영향)

  • Ro, Young-Seon;Ryu, Jae-Jun;Suh, Kyu-Won
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.47 no.1
    • /
    • pp.61-69
    • /
    • 2009
  • Statement of problem: Porcelain veneers have become a popular treatment modality for aesthetic anterior prosthesis. Fitting porcelain veneers in the mouth usually involve a try-in appointment, which frequently results in salivary contamination of fitting surfaces. Purpose: An in vitro study was carried out to investigate the effect of silane treatment timing and saliva contamination on the resin bond strength to porcelain veneer surface. Material and methods: Cylindrical test specimens (n=360) and rectangular test specimens (n=5) were prepared for shear bond test and contact angle analysis. Whole cylindrical specimens divided into 20 groups, each of which received a different surface treatment and/or storage condition. The composite resin cement stubs were light-polymerized onto porcelain adherends. The shear bond strengths of cemented stubs were measured after dry storage and thermocycling (3,000 cycles) between 5 and $55^{\circ}C$. The silane and their reactions were chemically monitored by using Fourier Transform Infrared Spectroscopy analysis (FTIR) and contact angle analysis. One-way analysis of variance (ANOVA) and Dunnett's multiple comparison were used to analyze the data. Results: FT-IR analysis showed that salivary contamination and silane treatment timing did not affect the surface interactions of silane. Observed water contact angles were lower on the saliva contaminated porcelain surface and the addition of 37% phosphoric acid for 20 seconds on saliva contaminated porcelain increased the degree of contact angle. Silane applied to the porcelain, a few days before cementation, resulted in increasing the bond strength after thermocycling. Conclusion: Within the limitation of this study, it can be concluded that it would be better to protect porcelain prosthesis before saliva contamination with silane treatment and to clean the contaminated surface by use of phosphoric acid.

The Crystal and Molecular Structure of Sulfadiazine (Sulfadiazine의 結晶 및 分子構造)

  • Shin Hyun So;Ihn Gwon Shik;Kim Hoon Sup;Koo Chung Hoe
    • Journal of the Korean Chemical Society
    • /
    • v.18 no.5
    • /
    • pp.329-340
    • /
    • 1974
  • Sulfadiazine, $C_{10}H_{10}N_4O_2S$, forms monoclinic crystals of space group $P21}c$ from a mixture of acetone and ethanol with $a=13.71{\pm}0.04,\;b=5.84{\pm}0.03,\;c=15.11{\pm}0.05{\AA},\;{\beta}=115.0{\pm}0.3^{\circ}$, and four molecules per cell. Three dimensional photographic data were collected with $CuK\alpha$ radiation. The structure was determined using Patterson and Fourier synthesis methods and refined by block diagonal least-squares methods with isotropic thermal parameter for all non-hydrogen atoms. The final R value was 0.15 for the 1517 observed independent reflections. The dihedral angle between the planes through the benzene ring and the pyrimidine ring is $76^{\circ}$. The conformational angle formed by the projection of the S-C(5) bond with that of N(1)-C(1) where the projection is taken along the S-N(1) bond is $77^{\circ}$. The imino nitrogen atom, N(1), and pyrimidine nitrogen atom, N(3), form intermolecular $N-H{\cdots}N$ hydrogen bond between the molecules related by center of symmetry. Amino nitrogen atom, N(4), forms two intermolecular $N-H{\cdots}O$ hydrogen bonds, with O(1) and O(2) atoms of different molecules separated by b. A two dimensional network of hydrogen bonds form infinite molecular sheets parallel to the (100) plane. Adjacent sheets are bound together by van der Waals forces.

  • PDF

Synthesis of a Platinum-Pincer Complex and Application to Catalytic Silylcyanation (백금 핀서 화합물의 합성 및 Silylcyanation 촉매반응에 대한 응용)

  • Kim, Yun Tae;Yoon, Myeong Sik
    • Applied Chemistry for Engineering
    • /
    • v.27 no.4
    • /
    • pp.366-370
    • /
    • 2016
  • A platinum(II) pincer complex composed of two six-membered fused metallacycles was directly synthesized using 1,3-bis(2-pyridyloxy)benzene and $K_2PtCl_4$. The structure of the complex was elucidated via NMR and X-ray crystallography analysis. The stable complex was formed due to the six-membered fused cycle structure around the Pt(II) center which reduced the bond angle strain. The complex was applied to the silylcyanation reaction of aldehydes and imines and showed an efficient catalytic activity with 99% yield.

Analyses on the Increment of Surface Hydrophobicity of Epoxy Composites by Thermal Treatment (열철리에 따른 Epoxy 복합재료의 표면 소수성증가에 관한 해석)

  • Lim, Kyung-Bum;Lee, Beak-Su;Chung, Mu-Yong;Lee, Duck-Chool
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.50 no.4
    • /
    • pp.153-160
    • /
    • 2001
  • In order to analyze the degradation process of epoxy/glass fiber for outdoor condition, FRP laminate was exposed to high temperature. Then, the degradation process was evaluated by comparing contact angle, surface potential, surface resistivity, and XPS. The experimental results showed that the amount of weight loss, contact angle, surface potential and surface resistivity increased up to 200 $^{\circ}C$ as a function of temperature. These phenomena show the existence of hydrophobic surface. With the change to the hydrophobic surface and the electrical potential and resistivity on FRP surface increased. In XPS to analyze surface chemical structures, the increased hydrophobicity in thermal increase of unsaturated double bond in carbon chains. Aslo, thermal treatment caused the discoloration on the point of treated surface. These phenomena were attributed to the generations of ether group.

  • PDF

Crystal Structure of Antiinflammatory Sulindac

  • Koo Chung Hoe;Kim Sang Hern;Shin Wanchul
    • Bulletin of the Korean Chemical Society
    • /
    • v.6 no.4
    • /
    • pp.222-224
    • /
    • 1985
  • The crystal structure of sulindac, $C_{20}H_{17}Fo_3S$, one of the nonsteroid antiinflammatory agents, has been determined by the X-ray diffraction techniques using diffractometer data obtained by the $\varpi-2{\theta}$ scan technique with Cu $$K_{\alpha}$$ radiation from a crystal with space group symmetry Pbca and unit cell parameters a = 8.166(1), b = 18.291(8), c = 23.245(10) ${\AA}.$ The structure was solved by direct methods and refined by full-matrix least-squares to a final R = 0.11 for the 1153 observed reflections. The carboxyl group is nearly perpendicular to the indenyl ring as observed in indomethacin. The dihedral angle between the indenyl and phenyl rings is $35^{\circ}while$ the corresponding angle in indomethacin is $67^{\circ}.$ Crystal packing consists of a hydrogen bond and partial ring stacking between the indenyl rings.

A Study on the Improvement of Adhesive Strength of Between Metal and Polyethylene Materials (금속재와 폴리에틸렌 재료간의 접착강도 향상에 대한 연구)

  • Lee, Ji-Hoon;Kim, Hyun-Ju;Jung, Dong-Ho;Rhee, Kyong-Yop
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.12
    • /
    • pp.143-148
    • /
    • 2007
  • Polyethylene is a typical hydrophobic material and it is difficult to bond the polyethylene material with metal material. Thus, it is important to modify the surface of polyethylene material to improve the bonding strength between the polyethylene and the metal materials. In this study, the surface modification of polyethylene material was investigated to improve the interfacial strength between the polyethylene and the steel materials. Polyethylene material was surface-modified in a plasma cleaner using an oxygen gas. Two cases of composites (surface-modified pelyethylene/steel composite and regular (as-received) pelyethylene/steel composite) were fabricated using a secondary bonding method. Shear and bending tests have been performed using the two cases of composites. The results showed that the contact angle did not change much as the modification time increased. However, the contact angle decreased from ${\sim}76^{\circ}\; to\;{\sim}41^{\circ}$ with the modification. The results also showed that the shear strength and the bending strength were improved about 3030 % and 7 %, respectively when the polyethylene was plasma-modified using an oxygen gas.

Thermal Analysis of Silicon Carbide Coating on a Nickel based Superalloy Substrate and Thickness Measurement of Top Layers by Lock-in Infrared Thermography

  • Ranjit, Shrestha;Kim, Wontae
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.37 no.2
    • /
    • pp.75-83
    • /
    • 2017
  • In this paper, we investigate the capacity of the lock-in infrared thermography technique for the evaluation of non-uniform top layers of a silicon carbide coating with a nickel based superalloy sample. The method utilized a multilayer heat transfer model to analyze the surface temperature response. The modelling of the sample was done in ANSYS. The sample consists of three layers, namely, the metal substrate, bond coat and top coat. A sinusoidal heating at different excitation frequencies was imposed upon the top layer of the sample according to the experimental procedures. The thermal response of the excited surface was recorded, and the phase angle image was computed by Fourier transform using the image processing software, MATLAB and Thermofit Pro. The correlation between the coating thickness and phase angle was established for each excitation frequency. The most appropriate excitation frequency was found to be 0.05 Hz. The method demonstrated potential in the evaluation of coating thickness and it was successfully applied to measure the non-uniform top layers ranging from 0.05 mm to 1 mm with an accuracy of 0.000002 mm to 0.045 mm.