• Title/Summary/Keyword: bond angle

Search Result 194, Processing Time 0.021 seconds

Crystal Structure of Bithional Sulfoxide, $C_{12}H_6Cl_4O_3S$ (비치오놀 설폭사이드, C12H6Cl4O3S의 결정구조)

  • Sin, Hyeon So;Song, Hyeon
    • Journal of the Korean Chemical Society
    • /
    • v.38 no.4
    • /
    • pp.283-287
    • /
    • 1994
  • The crystal stucture of bithional surfoxide, $C_{12}H_6Cl_4O_3S$, has been determined from 2295 independent reflections collected on an automated CAD-4 diffractometer with a graphite-monochromated $Mo-K\alpha$ radiation. The crystal belongs to the monoclinic, space group P2$_1$/n, with a unit cell dimensions a = 12.448(4), b = 9.740(1), c = $11.815(2)\AA$, $\beta$ = $100.06^{\circ}$, $\mu$ = 9.02 cm$^{-1}$, Dm = 1.76 g/cm$^3$, Dc = 1.75 g/cm$^3$, F(000) = 744, and Z = 4. The structure was solved by the direct method and refined by the least-squares method. The final R values was 0.037 for 2295 independent reflections. Overall conformation of the molecule is folded with respect to central surfur atom. Comparing with the molecular conformation of bithional, one of phenyl rings was swinged with about $180^{\circ}.$ This conformational change in the molecule results in the existance of intramolecular-hydrogen bond of S-O(3)---H-O(1) type and its steric hindrance between this moiety and the other phenyl ring. The two best planes of the phenyl rings have a maximum deviation of 0.009 $\AA$ for C(1) atom. The dihedral angle between two phenyl rings is $99.22^{\circ}.$ In the crystal structure, the molecules are packed with intermolecular-hydrogen bond of O(3)---H-O(2).

  • PDF

A Molecular Dynamics Simulation Study of Hydroxyls in Dioctahedral Phyllosilicates (분자동역학 시뮬레이션을 이용한 이팔면체 점토광물 수산기 연구)

  • Son, Sangbo;Kwon, Kideok D.
    • Journal of the Mineralogical Society of Korea
    • /
    • v.29 no.4
    • /
    • pp.209-220
    • /
    • 2016
  • Clay minerals are a major player to determine geochemical cycles of trace metals and carbon in the critical zone which covers the atmosphere down to groundwater aquifers. Molecular dynamics (MD) simulations can examine the Earth materials at an atomic level and, therefore, provide detailed fundamental-level insights related to physicochemical properties of clay minerals. In the current study, we have applied classical MD simulations with clayFF force field to dioctahedral clay minerals (i.e., gibbsite, kaolinite, and pyrophyllite) to analyze and compare structural parameters (lattice parameter, atomic pair distance) with experiments. We further calculated vibrational power spectra for the hydroxyls of the minerals by using the MD simulations results. The MD simulations predicted lattice parameters and interatomic distances respectively deviated less than 0.1~3.7% and 5% from the experimental results. The stretching vibrational wavenumber of the hydroxyl groups were calculated $200-300cm^{-1}$ higher than experiment. However, the trends in the frequencies among different surface hydroxyl groups of each mineral was consistent with experimental results. The angle formed by the surface hydroxyl group with the (001) plane and hydrogen bond distances of the surface hydroxyls were consistent with experimental result trends. The inner hydroxyls, however, showed results somewhat deviated from reported data in the literature. These results indicate that molecular dynamics simulations with clayFF can be a useful method in elucidating the roles of surface hydroxyl groups in the adsorption of metal ions to clay minerals.

Effect of Fluorination and Ultrasonic Washing Treatment on Surface Characteristic of Poly(ethylene terephthalate) (불소화 및 초음파 수세가 폴리(에틸렌 테레프탈레이트) 필름의 표면 특성에 미치는 영향)

  • Kim, Do Young;In, Se Jin;Lee, Young-Seak
    • Polymer(Korea)
    • /
    • v.37 no.3
    • /
    • pp.316-322
    • /
    • 2013
  • In this study, poly(ethylene terephthalate) (PET) was treated with fluorination and ultrasonic washing treatment for hydrophilic modification of PET film. We measured the change of surface modified PET film surface characteristics using contact angle, surface free energy, FE-SEM, AFM and XPS. After direct fluorination and ultrasonic washing treatment, the water contact angle was measured to be $10.81^{\circ}$, 85% reduction compared to the untreated PET film. Total surface free energy has been measured to be $42.25mNm^{-1}$, 650% increase compared to the untreated PET film. Also RMS roughness has been measured to be 1.965 nm, 348% increase compared to the untreated PET film. Hydrophilic functional group C-OH bond concentration has increased approximately 3 times. These results are attributed to the hydrophilic functional group and cavitation due to chemical etching. From this result, it was suggested that the fluorination-ultrasonic washing treatment method could be useful to make PET film surface hydrophilic.

Improving wettability of polyethylene(PE) surface by ion assisted reaction (이온보조반응법에 의한 Polyethylene(PE) 표면의 친수성 증가)

  • 석진우;최성창;장홍규;정형진;최원국;고석근
    • Journal of the Korean Vacuum Society
    • /
    • v.6 no.3
    • /
    • pp.200-205
    • /
    • 1997
  • Surface of polyethylene film was modified by ion assisted reaction in which ion beam is irradiated on polymer in reactive gas environments. Ion (argon and oxygen) beam energy was 1 keV, doses were varied from $1{\times}10^{14}$ to $1{\times}10^{17}$ inons/ $\textrm{cm}^2$, and amount of blowing oxygen from 0 to 4 sccm(ml/min). Wettability was measured by water contact angle measurement, and the surface functionality was analyzed by x-ray photoelectron spectroscopy. The contact angles of water to polyethylene modified by oxygen ion beam only decrease from 95 to degrees, and surface energy was not changed much. The contact angles remarkably decrease to 28 degrees and surface energy increase to 67 erg/ $\textrm{cm}^2$ when the films were modified by argon ion with various ion doses with blowing oxygen gases near the polyethylene surface. Improvement of wettability and surface energy are mainly due to the new functional group formation such as C-O or C=O, which are known as hydrophilic groups from the XPS analysis, and the assisted reaction is very effective to attach oxygen atoms to form functional groups on C-C bond chains of polyethylene.

  • PDF

Structure of Fluorometholone (Fluorometholone 의 구조)

  • Young Ja Park;Mee Youn Lee;Sung Il Cho
    • Journal of the Korean Chemical Society
    • /
    • v.36 no.6
    • /
    • pp.812-817
    • /
    • 1992
  • Fluorometholone $(C_{22}H_{29}FO_4)$, M.W. = 376.5, monoclinic, $P2_1$, a = 6.410(4), b = 13.431(3), c = 10.996(3)$\AA$, $\beta$ = 92.81$(3)^{\circ}$, Z = 2, F(000) = 404, T = 292K, $\lambda$(Mo-$K_\alpha$) = 0.7107$\AA$, $\mu$ = 0.57$cm^{-1}$, $D_c$ = 1.32 $g/cm^3$, $D_m$ = 1.31 $g/cm^3$ and final R = 0.032 for 1769 observed reflections. All bond lengths and angles are within normal limits. Ring A is almost planar, B ring has a highly symmetrical chair conformation and C ring is in a distorted chair conformation. Ring D is in a intermediate conformation between 13$\alpha$-14$\beta$-half-chair and 13$\alpha$-envelope. Torsion angle C(16)-C(17)-C(20)-O(20) of $-7.9^{\circ}$ is a lower value than those of $-31.9^{\circ}$ and $-16.5^{\circ}$ for 9-fluoro-6-methylprednisolone I and II respectively.

  • PDF

The Effects of Coupling Agent and Crosslinking Agent in the Synthesis of Acrylic Pressure Sensitive Adhesive for Polarizer Film (편광필름용 아크릴 점착제의 합성에서 커플링제와 가교제의 효과)

  • Lim, Chang-Hyuk;Ryu, Hoon;Cho, Ur-Ryong
    • Polymer(Korea)
    • /
    • v.33 no.4
    • /
    • pp.319-325
    • /
    • 2009
  • The solution polymerization was conducted to synthesize pressure sensitive adhesive for polarizer film using acrylic monomers. 2-Ethylhexylacrylate, butylacrylate, acrylic acid were used as acrylic monomers. The ratio was 2-ethylliexylacrylate:butylacrylate:acrylic acid=25:50:3.6 by reflecting $-40^{\circ}C$ of glass transition temperature in the pressure sensitive adhesive. When 1 wt% of coupling agent was added to the polymerized pressure sensitive adhesive, the light transmissivity was significantly increased. This result is due to the enhancement of adhesive power against liquid crystal cell by Si-O bond of coupling agents. Cross-linking agent was added by 0.5, 1.0, and 1.5 wt% with respect to the synthesized polymer. Initial tackiness decreased, while cohesion increased with increasing crosslinking agent. In the analysis of contact angle, the increase of crosslinking agents yielded the enhancement of surface energy, resulting in the decrease of contact angle. From the measurement of heat resistance, the acrylic pressure sensitive adhesive showed excellent heat resistance regardless of change in temperature and contents in crosslinking agent. In the observation of a cutting plane, the increased crosslinking agent represented a smoother and cleaner section. Comprehensively, the optimum additive amount of crosslinking agent was determined to be 1.0 wt% to monomer.

Preparation and Characterization of Silicone Hydrogel Lens Containing Poly(ethylene glycol) (PEG를 포함한 실리콘 수화젤 렌즈의 제조 및 특성)

  • Jang, Ha-Na;Chung, Youn-Bok;Kim, Sung-Soo
    • Polymer(Korea)
    • /
    • v.33 no.2
    • /
    • pp.169-174
    • /
    • 2009
  • Silicone hydrogels incorporated with poly(ethylene glycol)(PEG) were prepared and characterized to evaluate the effects of PEG on contact lenses. The silicone hydrogels were copolymerized with methacryloxypropyl tris(trimethylsiloxy) silane (TRIS), methyl methacrylate (MMA), N,N-dimethyl acrylamide (DMA) and PEG-containing monomers such as poly(ethylene glycol) methyl ether methacrylate (PEG- MEM). The silicone hydrogels were characterized using Fourier transform infrared spectroscopy (FT-IR), electron spectroscopy of chemical analysis (ESCA), and scanning electron microscopy (SEM). Water absorbance, water contact angle and light transmittance of the silicone hydrogels were evaluated. The experiments of protein adsorption were also carried out to evaluate the protein adsorption in tears. The peak intensity of C-O bond was increased by the incorporation of PEG-containing monomers and thus PEG incorporation into silicone hydrogels could be confirmed. Phase separation was not shown by the SEM observation of the cross-section of silicone hydrogels. Water absorbancy was increased, while water contact angle and light transmittance were decreased with increasing incorporation of the PEG-containing monomers. The absorption of proteins in tears, albumin, lysozyme and $\gamma$-globulin, on the surface of silicone hydrogels was decreased with increasing incorporation of the PEG-containing monomers.

The Effect of Acetonitrile on the Texture Properties of Sodium Silicate Based Silica Aerogels (아세토니트릴 첨가가 물유리 기반 실리카 에어로겔의 기공구조에 미치는 영향)

  • Kim, Younghun;Kim, Taehee;Shim, Jong Gil;Park, Hyung-Ho
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.25 no.4
    • /
    • pp.143-148
    • /
    • 2018
  • Sodium silicate based silica aerogels are lower in cost than silica alkoxide based silica aerogels, but the demand is decreasing as their physical properties are lowered. In this research, acetonitrile as a drying control chemical additive (DCCA) is added in the sol state to improve the pore-structural properties of sodium silicate based silica aerogel by preventing the agglomeration of particles and cross-linked bond. The sodium silicate based silica aerogel by ambient pressure drying were prepared by sol-gel process. Acetonitrile/$Na_2SiO_3$ molar ratio of 0, 0.05, 0.1, 0.15, and 0.2 was added to the sol state. The physical properties of the final product were analyzed using Fourier transform infrared, contact angle measurement, Brunauer-Emmett-Teller and Barrett-Joyner-Halenda measurements and field emission scanning electron microscopy. It was confirmed that the sample with adding 0.15 molar ratio of acetonitrile and sodium silicate showed a high specific surface area ($577m^2/g$), a high pore volume (3.29 cc/g), and a high porosity (93%) comparable to the pore-structural properties of silica alkoxide based silica aerogels.

Preparation and Characterization of Polyvinylidene Fluoride by Irradiating Electron Beam (전자빔 조사를 이용한 Polyvinylidene Fluoride의 제조 및 특성)

  • Choi, Yong-Jin;Kim, Min
    • Applied Chemistry for Engineering
    • /
    • v.22 no.4
    • /
    • pp.353-357
    • /
    • 2011
  • For the purpose of introducing hydrophilic function to pristine PVDF, pristine PVDF was modified under atmosphere and aqueous vapor by irradiating electron beam (EB). EB dose was varied from 0 to 125 K Gray, respectively. Their changes of chemical composition /structure were observed and evaluated by FT-IR, EDS and DSC. Also, their surface behaviors were evaluated by contact angle. In FT-IR study, it was confirmed that hydroxyl functions were introduced to pristine PVDF. In EDS analysis, mole ratio of F (fluoride) was almost constant (about 33%) in spite of increasing EB dose, meaning that hydroxyl function was introduced via dehydrozenation, not via deflurodination. In DSC study, $T_g$ increased with increasing EB dose, which was reconfirmed that hydroxyl function was introduced via dehydrozenation. $T_m$ increased with increasing EB dose, inferring that the increase in EB dose led to more outbreak of hydroxyl function which led to more enhanced hydrogen bond. In the result of contact angle, pristine PVDF film was $62^{\circ}$ and 125 K Gray-irradiated PVDF film was even $13^{\circ}$. All results showed that pristine PVDF was successfully changed to hydrophilic PVDF.

Design Parameters for Development of flexible Linear Shaped Charge (가소성 선형 성형폭약 제조를 위한 설계변수에 관한 연구)

  • 박근순;임한욱
    • Tunnel and Underground Space
    • /
    • v.13 no.3
    • /
    • pp.225-234
    • /
    • 2003
  • The structures to be demolished have become diverse in types from reinforced concrete to steel. The demand for demolition of steel structures is recently increasing in Korea. Most of flexible linear-shaped charges for steel demolition are now imported from foreign countries. To determine the optimum parameters of design far domestic development of flexible linear-shaped charges, some basic experiments have been carried out and their results are summarized as follows; Copper is shown to be superior to aluminium and lead as a liner material. It is also proved that the optimum apex angle of liner is 90$^{\circ}$ in comparision with 45$^{\circ}$, 60$^{\circ}$ and 120$^{\circ}$ Adequate thickness of liners, standoff distance in terms of quantity of explosives are also examined. Explosives and liners are required to be plasticized in order to improve the bond between explosives and various shapes of steel structures.