• Title/Summary/Keyword: bolt Number

Search Result 105, Processing Time 0.024 seconds

Development Process of Monocoque Frame for Hybrid Bicycle using Bolt Fastening (볼트체결을 이용한 하이브리드 자전거 모노코크 프레임 개발 프로세스)

  • Lee, In-Chul;Jang, Dong-Hwan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.6
    • /
    • pp.93-100
    • /
    • 2013
  • This paper presents the development process for a bicycle monocoque frame using bolt fastening. Traditionally, bicycle frames have been constructed with metal tubes joined at their ends by welding. These frames have been brazed or soldered onto metal lugs, forming the frame. Because stress loads become greatest at the joint of the bicycle tube frame, joint construction strongly influences frame design and construction. To avoid the inherent problems of material discontinuity at frame joints, numerous designers have attempted to reduce or eliminate the number of joints in tube frames. Nevertheless, the manufacture of high quality, reliable, one-piece and jointless frames has proven difficult and expensive. In this study, a new monocoque frame adapted to a hybrid bike is proposed. The advantage of the monocoque frame, is theat is has a rechargeable battery system that is built into the frame; as a result, the emotional quality for the customer is improved. In order to estimate the design compatibility compared with that of tube frames, structural analysis is performed using finite element method. A prototype based on a modified design has also been made and stability testing has been carried out.

Study on the Effect of Bolt and Sub-bench on the Stabilization of Tunnel Face through FEM Analysis (FEM해석에 의한 막장볼트 및 보조벤치의 막장안정성 효과에 관한 연구)

  • Kim, Sung-Ryul;Yoon, Ji-Sun
    • Tunnel and Underground Space
    • /
    • v.18 no.6
    • /
    • pp.427-435
    • /
    • 2008
  • In this paper, review was made for the excavation method and optimum bench length for unstable tunnel face in case of rock classification type V in order to make the best use of in-situ bearing capacity. 3D FEM analyses were performed to investigate the influences on the tunnel face and adjacent area with regard to the pattern and number of bolts when face bolts were used as a supplementary measure. As a result of this study, full section excavation method with sub-bench is effective in reducing the displacement greatly due to early section closure. Displacement-resistant effects in accordance with the bolting patterns are grid type, zig-zag type and then circular type in order of their effect. And horizontal extrusion displacement of tunnel face reduces as the number of bolts increase. A grid type face bolt covering $1.5m^2$ of tunnel face could secure the face stability in case of full section excavation method with sub-bench.

A Study on the Stiffness of CBA(Corner Block with Anchor Bolt) Joint in Knockdown Type Table Furniture (조립식(組立式) 탁자(卓子)의 CBA접합부(接合部) 강성(剛性)에 관(關)한 연구(硏究))

  • Chung, Woo-Yang;Lee, Phil-Woo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.17 no.2
    • /
    • pp.34-64
    • /
    • 1989
  • Corner block with anchor bolt(CBA) joint method used in knock-down type table furniture manufacturing can reduce the packing and transporting cost. Unfortunately. it also has the disastrous defect to be loosend and unstable during the service life mainly due to fatigue and creep(repeated and prolonged loading). So 22 joint groups constructed were tested to evaluate the effect of some design factors related to the size of side rail(apron). block attachment to side rail. and the number of anchor bolt as well as the effect of the type of corner block(mitered type vs. rectangular type) Usable strength from the stiffness coefficients of each joint group were analysed with SPSS /PC+ and described as the criteria of CBA joint construction. The conclusions were as follows: The height of side rail(50, 75 and 100 mm) and the addition of polyvinyl acetate(PVAc) emulsion in the corner block attactment to side rail had the effect on raising the usable strength of CBA joint with remarkable high significance. And the effect of 2 - anchor bolts was also superior to that of 1 - bolt significantly. However. the thickness of side rail(22 mm vs. 25 mm) had no effect on the strengthening the table joint rigidity. Mitered type corner block joint appeared to he recommendable for CBA jointed table construction rather than the rectangular type one regardless of the method of block attachment to side rail. The best result identified from Duncan's multiple comparison was in the construction with 25 mm thick and 100 mm height of side rail fastened using 2 - anchor bolts in mitered type corner block. But it would be reasonable to use 22 mm thick & 75 mm high side rail and mitered corner block with PVAc emulsion & 2 bolts considering the productivity and production cost down in the MDF furniture manufacturing industries.

  • PDF

Quantitative Assessment of the Fastening Condition and the Crack Size with Using Piezoceramic(PZT) Sensors (압전소자를 이용한 볼트토크 및 크랙의 정량적평가에 관한 연구)

  • Hong, Dong-Pyo;Hong, Yong;Wang, Gao-Ping;Han, Byeong-Hee;Kim, Young-Moon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.603-606
    • /
    • 2006
  • We present a study on the development of a practical and quantitative technique for the assessment of the structural health condition with using piezoceramic(PZT) sensors. The electro-impedance-based technique with the PZT patches is very sensitive for evaluation of the incipient and small damage in a high frequency range, and however the commonly traditional modal analysis method is effective only for considerably larger damages in low frequency range. The paper presents the technique in detecting and characterizing real-time damage on the specimen that is an aluminum plate fastened with bolts and nuts by different torques and as well a plate with a crack. By using the special arrangement of the PZT sensors, the required longitudinal wave is generated through the specimen. A large number of experiments are conducted and the different conditions of the specimens, i.e. the location and extent of loosening bolts, and the plate with a crack are simulated. respectively. Since fixing and loosening the loosened bolt is controlled by a torque wrench, we can control exactly the experiment of the different torques. Compared with the simulated healthy condition, we can find whether or not there is a damage in the specimen with using an impedance analyzer with the PZT sensors. Several indices are discussed and used for assessing the different simulated damages. As for the location of bolt loosening, the RMSD is found to be the most appropriate index for numerical assessment and as well the RMSD shows strongly linear relationship for assessing the extent of the bolt loosening, and the frequency peak shift ${\Delta}F$ is used to assess the cracked plate. The possibility of repeatability of the pristine condition signatures is also presented and the appropriate frequency range and interval are uniquely selected through large numbers of experiments.

  • PDF

A numerical study on the safety of tunnel face using face bolting method (페이스 볼트 공법을 이용한 터널 막장 안정성에 관한 수치해석적 연구)

  • Ra, Jee-Hyun;Yoon, Ji-Sun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.9 no.1
    • /
    • pp.83-89
    • /
    • 2007
  • As tunnel excavation generats stress release, a stability security of tunnel face is mainly important in case of tunnel excavation in the weak grounds. Using the steel bar or glass fiber pipe which had regular hardness, a face bolt method to reinforce previously is applied to an excavation object tunnel face aspect among measures methods regarding this. Therefore, used $FLAC^{3D}$ Ver. 2.1 on 5 Case of 0.5D (2EA), 1.0D, 1.5D, 2.0D with the length and 6 Case of 0, 20, 40, 60, 80, 100EA with the number of the bolt that a face bolt method was installed at these papers in the necessary weak grounds in order to review applicability of the tunnel face reinforcement method that used these face bolts, and executed three dimension continuous analysis.

  • PDF

A Study on Numerical Analysis of Thermal Stress for an Monolith Ceramic Heat Exchanger (일체형 세라믹 열교환기의 전산 열응력 해석에 관한 연구)

  • Paeng, Jin-Gi;Kim, Ki-Chul;Yoon, Young-Hwan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.11
    • /
    • pp.613-620
    • /
    • 2009
  • The thermal stresses of a ceramic heat exchanger were analyzed numerically since the ceramic material is good in heat resistance but weak in the thermal stress. The analysis of thermal stress was conducted in the ceramic core with two boundary conditions depending on bolt jointing. The thermal stresses were computed by applying temperature and pressure distributions obtained from the numerical results of conjugate heat transfer to ANSYS WORKRBENCH. When number of bolt joining halls was reduced from $8\times2$ to $4\times2$, the maximum principal stresses decrease by 47.6~50.5% and increase in safety factors by 2.18~2.5 for ultimate tensile strength. Thus, it can be said that bolt joining halls should be minimized in ceramic heat exchanger to be efficient in reducing thermal stress. In addition, the width of particular gas flow passages were revised from 52 mm to 42 mm to reduce maximum thermal stresses since certain passages experienced high thermal stresses. From the revision, safety factors were increased by 13.8~14.1% for the boundary condition of $4\times2$ bolt joining halls. Therefore, it is suggested that thermal stress can be reduced by changing local geometry of a ceramic heat exchanger.

Robust Design for Parts of Induction Bolt Heating System (유도가열시스템의 구성부품에 대한 강건설계)

  • Kim, Doo Hyun;Kim, Sung Chul;Lee, Jong Ho;Kang, Moon Soo;Jeong, Cheon Kee
    • Journal of the Korean Society of Safety
    • /
    • v.36 no.2
    • /
    • pp.10-17
    • /
    • 2021
  • This paper presents the robust design of each component used in the development of an induction bolt heating system for dismantling the high-temperature high-pressure casing heating bolts of turbines in power plants. The induction bolt heating system comprises seven assemblies, namely AC breaker, AC filter, inverter, transformer, work coil, cable, and CT/PT. For each of these assemblies, the various failure modes are identified by the failure mode and effects analysis (FMEA) method, and the causes and effects of these failure modes are presented. In addition, the risk priority numbers are deduced for the individual parts. To ensure robust design, the insulated-gate bipolar transistor (IGBT), switched-mode power supply (SMPS), C/T (adjusting current), capacitor, and coupling are selected. The IGBT is changed to a field-effect transistor (FET) to enhance the voltage applied to the induction heating system, and a dual-safety device is added to the SMPS. For C/T (adjusting current), the turns ratio is adjusted to ensure an appropriate amount of induced current. The capacitor is replaced by a product with heat resistance and durability; further, coupling with a water-resistant structure is improved such that the connecting parts are not easily destroyed. The ground connection is chosen for management priority.

Developing connection design rules in China

  • Shi, Yongjiu
    • Steel and Composite Structures
    • /
    • v.5 no.2_3
    • /
    • pp.141-158
    • /
    • 2005
  • The new version of Code for Design of Steel Structures (GB50017-2003) and other design standards in China were released over the last two years. Comparing with the previous version (GBJ17-88), many clauses covering the connection design have been revised. A number of additional provisions are supplemented to specify the design requirements for beam-column moment connections, as well as gusset plates for truss joints. In this paper, a summary on the design rules on connections specified in the current Chinese code is presented, and relevant commentary and background information is provided whenever appropriate. The design criteria governing weld and bolt resistance is examined and reviewed. Moreover, several issues such as detailing requirements for stiffeners and end-plate connections are discussed.

Estimation of Safety and Economical Efficiency of Large High Tension Bolted Joints (대직경 고장력볼트 이음부의 안전성 및 경제성 평가)

  • Sung, Ki-Tae;Kyung, Kab-Soo;Lee, Seung-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.6 s.58
    • /
    • pp.97-105
    • /
    • 2009
  • This study was conducted for the purpose of examinating the safety and economical efficiency of large high tension bolted joints. The specimen using F10T-M30 large high strength bolts has been selected and static tensile test has been conducted to evaluate the slip characteristics. In addition, finite element analysis has been carried out to estimate the number of required bolts. As a result, the average slip coefficient of M30 high strength bolts exceeded 0.4 - the standard in highway bridge design specification - and has satisfied the slip strength, which is the same as that of M22 high strength bolts. In addition, if F13T-M22 high strength bolts were applied, the number of required bolts decreased by 21%, and if F10T-M30 high strength bolts were applied, the number of required bolts decreased by 46%, that leads to the conclusion that the economical efficiency in accordance with diametering of high strength bolts was now verified.

Hybrid bolt-loosening detection in wind turbine tower structures by vibration and impedance responses

  • Nguyen, Tuan-Cuong;Huynh, Thanh-Canh;Yi, Jin-Hak;Kim, Jeong-Tae
    • Wind and Structures
    • /
    • v.24 no.4
    • /
    • pp.385-403
    • /
    • 2017
  • In recent years, the wind energy has played an increasingly important role in national energy sector of many countries. To harvest more electric power, the wind turbine (WT) tower structure becomes physically larger, which may cause more risks during long-term operation. Associated with the great development of WT projects, the number of accidents related to large-scaled WT has also been increased. Therefore, a structural health monitoring (SHM) system for WT structures is needed to ensure their safety and serviceability during operational time. The objective of this study is to develop a hybrid damage detection method for WT tower structures by measuring vibration and impedance responses. To achieve the objective, the following approaches are implemented. Firstly, a hybrid damage detection scheme which combines vibration-based and impedance-based methods is proposed as a sequential process in three stages. Secondly, a series of vibration and impedance tests are conducted on a lab-scaled model of the WT structure in which a set of bolt-loosening cases is simulated for the segmental joints. Finally, the feasibility of the proposed hybrid damage detection method is experimentally evaluated via its performance during the damage detection process in the tested model.