• Title/Summary/Keyword: boiler safety

Search Result 94, Processing Time 0.023 seconds

Measures for Preventing Pressure Fracture of Fire and Flue Tube Boiler (노통연관식 보일러의 압궤사고 방지대책)

  • Lee Keun-Oh
    • Journal of the Korean Society of Safety
    • /
    • v.19 no.4 s.68
    • /
    • pp.14-19
    • /
    • 2004
  • Boiler is a hazardous equipment to have potential explosion ail the time. And not only it has malfunction at explosion. it lead to people death but also secondary accident such as explosion and fire. Therefore, this equipment should not be broken for keeping its own function. And also, high level of safety should be kept in the process of the use not to be malfunctioned. A large scale of accident due to boiler explosion can be preventive in advance. Boiler fracture is occurred by instant expansion (approximately 1700 time) from quick evaporation of rater in boiler, due to pressure decrease in boiler Emitting energy from it is tremendous and it is so dangerous because of its high temperature. Secondary explosion such as fire is also a main hazard occurring at fuel supply place. If any devices with high pressure is broken, then not only boiler vessel but also components of it are spread with high speed, causing secondary accident. This study is to analyze integrally accident cause of fire and flue tube boiler to have occurred pressure fracture actually, to show countermeasures to prevent accident loss from the fire and flue tube boiler.

Cause Analyses of Boiler Accident and Their Counter-plans Based on Accident Cases (사고사례에 기초한 보일러 사고의 원인분석 및 대책)

  • 윤상권;장통일;임현교
    • Journal of the Korean Society of Safety
    • /
    • v.18 no.3
    • /
    • pp.131-140
    • /
    • 2003
  • An accident involving a boiler can result in a disaster since it handles high-pressurized steam so that it may cause an explosion. Therefore, the boiler is very susceptible to industrial accidents. This thesis aimed to develop counter-plans to prevent industrial accidents involved the boiler. At first after collecting accident cases involving boilers, a survey on the trait of them was carried out. Ant on the other hand a qualitative analysis was conducted to draw out hazardous components in the boiler itself and their inherent relative importance was assessed. Through this procedure, 'negligence of unsafe condition' was noted as the major cause for unsafe acts whereas 'fault in work procedure' for unsafe condition. In the meanwhile, results of a hazard analysis using FMEA technique ranked gas safety devices, a switch preventing gas from under-pressurization, protect relays high. In particular, it was pointed out that the water feeding and steam subsystem has more components in hazard than other subsystems. Considering these analyses results, counter-plans to improve safety management was suggested also.

Prediction of the Combustion Performance in the Coal-fired Boiler using Response Surface Method (반응표면법을 이용한 석탄 화력 보일러 연소특성 예측)

  • Shin, Sung Woo;Kim, Sin Woo;Lee, Eui Ju
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.1
    • /
    • pp.27-32
    • /
    • 2017
  • The experimental design methodology was applied in the real scale coal-fired boiler to predict the various combustion properties according to the operating conditions and to assess the coal plant safety. Response surface method (RSM) was introduced as a design of experiment, and the database for RSM was provided with the numerical simulation of the coal-fired boiler. The three independent variables, high heating value of coal (HHV), overall stoichiometry excess air ratio (OST), and burner-side stoichiometry excess air ratio (BST), were set to characterize the cross section averaged NOx concentration and temperature distribution. The maximum NOx concentration was predicted accurately and mainly controlled by BST in the boiler. The parabola function was assumed for the zone averaged peak temperature distribution, and the prediction was in a fairly good agreement with the experiments except downstream. Also, the location of the peak temperature was compared with that of maximum NOx, which implies that thermal NOx formation is the main mechanism in the coal-fired boiler. These results promise the wide use of statistical models for the fast prediction and safety assessment.

Analysis and Development for Installation Safety Standard on Gas Boiler Exhaust System (가스보일러 배기시스템 설치 기준 분석 및 개발 (가스보일러 배기시스템 관련 설치 안전기준 개발II))

  • Lee, Soo-jeong;Choi, Kyoung suhk;Chae, Chung-keun;Kim, Ha na;Yun, Jin sun
    • 한국연소학회:학술대회논문집
    • /
    • 2014.11a
    • /
    • pp.111-112
    • /
    • 2014
  • Exhaust gas boiler system with respect to national and international safety standards, comparative study best suited to the realities of local exhaust and exhaust system manufacturing, certification standards and gas boiler installation, management, and mip draft inspection standards will proceed through this study.

  • PDF

A Study on the Assessment of Safety Performance for Complex Installation System of Stationary Fuel Cell and Boiler (건물용 연료전지-보일러 복합설치 안전성능 평가에 관한 연구)

  • Kim, Min-Woo;Lee, Eun-Kyung;Oh, Gun-Woo;Lee, Jung-Woon;Lee, Seung-Kuk
    • Korean Journal of Hazardous Materials
    • /
    • v.6 no.2
    • /
    • pp.77-86
    • /
    • 2018
  • Interest in renewable energy is increasing for eco-friendly use of energy, and fuel cells are being used in various ways such as houses and buildings as power generation methods that have low emissions such as $NO_X$ and $CO_2$. As the supply of fuel cells expands, more and more boilers are installed in the existing buildings, but safety management is not being performed properly. Therefore, in this study, a prior study was conducted on the status of fuel cell-boiler complex installation and related criteria, and the risk factors were analyzed according to the installation environment and structure. Based on these standards, the safety performance of the fuel cell-boiler combined installation is assessed by conducting a demonstration using the starting product of the simulated operation to derive the installation criteria (proposal) for the fuel cell-boiler combined installation. The installation criteria (proposal) include the construction and connection method of the piping according to the fuel cell-boiler complex installation.

Development of High Efficiency Boiler with High Safety (안전성이 높은 고효율 보일러 개발에 관한 연구)

  • Jung, Won
    • Journal of Applied Reliability
    • /
    • v.11 no.1
    • /
    • pp.83-95
    • /
    • 2011
  • Boiler efficiency has a direct impact on energy consumptions, which results in lower cost of operations and services. Usually high efficiency boilers are regarded as boilers with an efficiency of greater than 90%. However, it is likely that normal boilers are running at significantly lower efficiencies than this. This paper presents a process of developing a highly efficient energy consumption boiler. We adopt direct heat method while normal boilers are designed as indirect heat method. The submerged combustion method is considered to design for very high efficient boiler.

Analysis of Safety and Performance Vulnerabilities Using Heat-Using Equipment(Industrial Boiler) Inspection Results (열사용기자재 검사대상기기(산업용 보일러) 검사결과를 활용한 안전 및 성능 취약점 분석)

  • Kim, Hyung-Jun;Oh, Choong-Hyeon
    • Journal of the Korean Institute of Gas
    • /
    • v.26 no.4
    • /
    • pp.18-26
    • /
    • 2022
  • The Korean government is conducting heat-using equipment(industrial boiler) inspection in accordance with the Energy Use Rationalization Act because of the heat-using equipment(industrial boiler)'s risks such as explosion and fire, and safe use and management. This paper aimed to setup the safe and performance vulnerabilities from database based on the inspection results for heat-using equipment(industrial boiler). This study surveyed the inspection results of 1,249 heat-using equipment(industrial boiler) which were failed inspection of heat-using equipment(industrial boiler) from january 2016 to december 2020. And the analysis method is to inform safety and performance vulnerability categories of heat-using equipment(industrial boiler) by statistically analyzing the failure reasons of boiler type and inspection type which are high variance in failure rate. The safety and performance vulnerability categories was abbreviated into 18 cases. And each catagory's main reason for failure was suggested by additional analyzing the opinions of inspectors. This paper would be the basic source and the comprehensive information dealing with the safety and performance vulnerability of heat-using equipment(industrial boiler).

Dynamic Simulation and Controller Design for the Safe Operation of Boiler Drum (보일러 드럼의 안전조업을 위한 동특성 모델링 및 제어기 설계)

  • 이익형
    • Journal of the Korean Society of Safety
    • /
    • v.8 no.4
    • /
    • pp.133-138
    • /
    • 1993
  • The stable and safe operation of a boiler system is essential for ensuring stability of the chemical processes. A dynamic simulation of a boiler drum was performed to identify the dynamics of the boiler drum. The obtained results represented that the variation of process variables disturb boiler system. So, disturbance rejection with tracking and constraints handing was necessary for stable operation of boiler drum. Among many controller, GPC has been known to show good performance in set point tracking than disturbance. In order to improve disturbance rejection performance measurable disturbance term was Introduced in basic GPC model. The controller which had tracking and disturbance rejection was designed for Improving the stable operation of a boiler system.

  • PDF

Development of a High Efficiency Wood Pellet Boiler with Improved Safety (안전성을 고려한 고효율 목재펠릿 보일러 개발)

  • Chung, Chan-Hong;Park, Min-Cheol
    • Journal of Applied Reliability
    • /
    • v.12 no.1
    • /
    • pp.35-46
    • /
    • 2012
  • Wood pellet is one of biomass energy fuels, which is produced by compressing woody biomass such as sawdust, planer shavings, and whole-tree removal or tree tops and branches leftover after logging into cylindrical form. Latterly much attention has been paid to wood pellet boiler which is suitable for use at various scales in domestic and industrial furnaces for heat production to replace conventional fossil fuel energy sources since the use of wood pellet that is carbon neutral can alleviate global warming. This study presents the result of developing a high efficiency wood pellet boiler with 55MJ/h capacity. Efficiency has been improved by using a rotating disk burner with a shorter screw feeder. Special attention has been paid to the improvement of the safety of the wood pellet boiler from backfire by adopting a double protecting system composed of a shutter and an air curtain. The result shows that the efficiencies of the wood pellet boiler are 97.2% and 89.2% based on lower and higher heating values, respectively, at 15.1kW of heating output.

Knowledge Representation for the Automatic Shutdown System in Boiler Plants (보일러 플랜트의 자동 Shutdown 시스템을 위한 지식표현)

  • 송한영;황규석
    • Journal of the Korean Society of Safety
    • /
    • v.11 no.3
    • /
    • pp.143-153
    • /
    • 1996
  • Shutdown of boiler plants is a dynamic, complicated, and hazardous operation. Operational error is a major contributor to danserous situations during boiler plant shutdowns. It is important to develop an automatic system which synthesizes operating procedures to safely go from normal operation to complete shutdown. Knowledge representation for automatic shutdown of boiler plants makes use of the hierarchical, rule-based framework for heuristic knowledge, the semantic network, frame for process topology, and AI techniques such as rule matching, forward chaining, backward chaining, and searching. This knowledge representation and modeling account for the operational states, primitive operation devices, effects of their application, and planning methodology. Also, this is designed to automatically formulate subgoals, search for positive operation devices, formulate constraints, and synthesize shutdown procedures in boiler plants.

  • PDF