• Title/Summary/Keyword: body stress

Search Result 2,318, Processing Time 0.03 seconds

Ameliorating Effects of Geumnyeonyijin-tang Water Extract on Obesity-Induced T2DM and Related Complications in Mice

  • Lee, Yoo-na;Baek, Kyungmin;Ku, Sae-kwang
    • The Journal of Internal Korean Medicine
    • /
    • v.43 no.4
    • /
    • pp.606-624
    • /
    • 2022
  • Objective: The aim of this study was to compare the effects of different doses of Geumnyeonyijin-tang (GNYJT) water extracts with those of metformin (250 mg/kg) in mild diabetic-obese mice. Methods and Results: The 48 mice were divided into 1 normal pellet diet (NFD) group and 5 high-fat diet (HFD) groups. At the end of 12 weeks of oral administration of metformin (250 mg/kg) or GNYJT water extracts (400, 200, or100 mg/kg), the effects were evaluated. The HFD control mice showed noticeable increases in body weight, adipose tissue density, fat pad weight of the periovarian and abdominal wall, and insulin, blood glucose, and HbA1c levels, with decreases in serum HDL levels. Increases in the periovarian and dorsal abdominal fat pad, regions of steatohepatitis, adipocyte hypertrophy, and hepatocyte hypertrophy were also discovered. The HFD group showed a decline in glucose levels and elevation of hepatic gluconeogenesis, suggesting an HFD-induced AMPK downregulation related to glucose dysregulation, as well as lipid metabolism related to obese insulin-resistant type II diabetes, dyslipidemia, and oxidative stress related diabetic hepatopathy (non-alcoholic fatty liver disease, NAFLD). Conclusion: Assessment of the key parameters for inhibition of diabetes and related complications in HFD-fed diabetic-obese mice demonstrated that GNYJT water extracts have favorable ameliorating effects. The effect of GNYJT was manifested through the stimulation of AMPK upregulation of related hepatic glucose enzyme activities and expression of lipid metabolism-related genes. Therefore, appropriate oral dosages of GNYJT could be promising as a new preventive candidate for controlling diabetes and related complications. Further screening of biologically active compounds, elucidation of detailed mechanisms, and more animal studies are warranted.

Assessment of the Risks of Occupational Diseases of the Passenger Bus Drivers

  • Golinko, Vasyl;Cheberyachko, Serhiy;Deryugin, Oleg;Tretyak, Olena;Dusmatova, Olga
    • Safety and Health at Work
    • /
    • v.11 no.4
    • /
    • pp.543-549
    • /
    • 2020
  • Background: The working conditions of bus drivers are difficult; they lead to occupational diseases and require careful study, particularly in Ukraine. The objective of the article is the description of occupational health risks of passenger bus drivers that lead to deteriorating health. Methods: The risk assessment was performed using a modified Risk Score method, which allowed determining the generalized level of danger to the driver's health. The hygienic hazards level was assessed as based on Stevenson's law, which was generalized later. Results: Based on the modification of the Risk Score method, it was possible to depart from expert assessments method of the risk level and calculate the general indicator based on the degree of dependence of the impact on the human body on its intensity, proposed by V. Minko. This allows objective determining of the impact of hygiene hazards on the health of the driver and to predict the occurrence of occupational diseases associated with the cardiovascular system, musculoskeletal system, and partial or complete disability due to the accumulation of emotional fatigue. The hazard assessment was carried out for three brands of passenger buses common in Ukraine, in which the driver is exposed to the dangers of fever, vibration, noise, harmful impurities in the bus cabin, and emotional load. Conclusion: The health of drivers in the cabins of passenger buses is most affected by hygiene hazards: fever, vibration, and emotional stress. The generalized level of risk is calculated by the modified method of Risk Score is 0.83; -0.99, -0.92 respectively.

Nonlinear creep model based on shear creep test of granite

  • Hu, Bin;Wei, Er-Jian;Li, Jing;Zhu, Xin;Tian, Kun-Yun;Cui, Kai
    • Geomechanics and Engineering
    • /
    • v.27 no.5
    • /
    • pp.527-535
    • /
    • 2021
  • The creep characteristics of rock is of great significance for the study of long-term stability of engineering, so it is necessary to carry out indoor creep test and creep model of rock. First of all, in different water-bearing state and different positive pressure conditions, the granite is graded loaded to conduct indoor shear creep test. Through the test, the shear creep characteristics of granite are obtained. According to the test results, the stress-strain isochronous curve is obtained, and then the long-term strength of granite under different conditions is determined. Then, the fractional-order calculus software element is introduced, and it is connected in series with the spring element and the nonlinear viscoplastic body considering the creep acceleration start time to form a nonlinear viscoplastic creep model with fewer elements and fewer parameters. Finally, based on the shear creep test data of granite, using the nonlinear curve fitting of Origin software and Levenberg-Marquardt optimization algorithm, the parameter fitting and comparative analysis of the nonlinear creep model are carried out. The results show that the test data and the model curve have a high degree of fitting, which further explains the rationality and applicability of the established nonlinear visco-elastoplastic creep model. The research in this paper can provide certain reference significance and reference value for the study of nonlinear creep model of rock in the future.

Numerical FEM assessment of soil-pile system in liquefiable soil under earthquake loading including soil-pile interaction

  • Ebadi-Jamkhaneh, Mehdi;Homaioon-Ebrahimi, Amir;Kontoni, Denise-Penelope N.;Shokri-Amiri, Maedeh
    • Geomechanics and Engineering
    • /
    • v.27 no.5
    • /
    • pp.465-479
    • /
    • 2021
  • One of the important causes of building and infrastructure failure, such as bridges on pile foundations, is the placement of the piles in liquefiable soil that can become unstable under seismic loads. Therefore, the overarching aim of this study is to investigate the seismic behavior of a soil-pile system in liquefiable soil using three-dimensional numerical FEM analysis, including soil-pile interaction. Effective parameters on concrete pile response, involving the pile diameter, pile length, soil type, and base acceleration, were considered in the framework of finite element non-linear dynamic analysis. The constitutive model of soil was considered as elasto-plastic kinematic-isotropic hardening. First, the finite element model was verified by comparing the variations on the pile response with the measured data from the centrifuge tests, and there was a strong agreement between the numerical and experimental results. Totally 64 non-linear time-history analyses were conducted, and the responses were investigated in terms of the lateral displacement of the pile, the effect of the base acceleration in the pile behavior, the bending moment distribution in the pile body, and the pore pressure. The numerical analysis results demonstrated that the relationship between the pile lateral displacement and the maximum base acceleration is non-linear. Furthermore, increasing the pile diameter results in an increase in the passive pressure of the soil. Also, piles with small and big diameters are subjected to yielding under bending and shear states, respectively. It is concluded that an effective stress-based ground response analysis should be conducted when there is a liquefaction condition in order to determine the maximum bending moment and shear force generated within the pile.

Analysis of Yoga Keywords with Media Big Data (미디어 빅데이터를 통한 요가 관련 키워드 분석)

  • Chi, Dong-Cheol;Lim, Hyu-Seong;Kim, Jong-Hyuck
    • Journal of the Korea Convergence Society
    • /
    • v.13 no.5
    • /
    • pp.365-372
    • /
    • 2022
  • South Korea is entering an aging society, and since the musculoskeletal system directly affects elders' daily life, muscle exercise and flexibility are required. In particular, yoga relaxes the mind and the body and heightens stress coping ability. To investigate keywords about yoga, news articles provided by BIGKinds, a news analysis system, was applied to collect articles from January 1, 2019, to December 31, 2021, and an analysis was conducted about the monthly keywords and the relationship followed by the weighted degree. Based on the research findings, first, it showed that there is high interest in yoga during the spring and autumn seasons. Second, yoga is offered in non-contact methods nowadays, and various social network services are applied for the operation. Third, there was high public attention to articles on yoga instructors and trainers, and this revealed the importance and interest in online coaching. It is anticipated to apply it for the development of yoga workout programs and base data to develop sports for all.

Regional disparities related to cardiovascular diseases and diet quality in Korean adults: based on the 2013-2016 Korea National Health and Nutrition Examination Survey Data

  • Bo Young, Seo;Eun Sil, Her
    • Nutrition Research and Practice
    • /
    • v.16 no.6
    • /
    • pp.755-764
    • /
    • 2022
  • BACKGROUND/OBJECTIVES: Cardiovascular diseases (CVDs) are the leading cause of death in Koreans, and eating habits, including diet quality, are among the etiologies of these diseases. Recently, various studies on regional health disparities have been conducted. However, there are limited studies on their relationship with nutritional factors. This study aimed to identify the magnitude of regional disparities in diet quality and prevalence of CVD in Korean adults. SUBJECTS/METHODS: This study included 17,646 participants aged ≥ 20 years from the 7th (2013-2016) Korean National Health and Nutrition Examination Survey. Participants were classified into four groups based on their residential areas: City 1, City 2, City 3, and non-city. Demographic characteristics, health-related factors, body mass index (BMI), metabolic syndrome index, diet quality, and CVD prevalence were evaluated. RESULTS: In terms of demographic characteristics, age (P < 0.001), marital status (P < 0.001), educational level (P < 0.001), and income (P < 0.001) were lower in the non-city category. Health-related factors such as monthly drinking rate (P < 0.01) and mental stress (P < 0.05) were the highest in City 1 and lowest in the non-city group. Conversely, the current smoking rate (P < 0.05), BMI (P < 0.05), and prevalence of metabolic syndrome (P < 0.001) were the highest in the non-city group (P < 0.05). The non-city group also had the highest prevalence of CVDs (35.6%). This group had the lowest diet quality index (68.36 ± 0.22, P < 0.01), caused by low intake of fruit and calcium, a lack of sodium moderation, and an overall imbalance in the macronutrient and fatty acid ratio. When the diet quality index was increased by 1, the odds ratio for the prevalence of CVDs was reduced by 0.991 (P < 0.001), but this was not the case in all regions. CONCLUSIONS: This study provides useful information and data in identifying and resolving the regional health disparities related to CVD prevalence and implementation of public health nutrition systems.

A systematic review of the biological mechanisms linking physical activity and breast cancer

  • Hong, Bok Sil;Lee, Kang Pa
    • Korean Journal of Exercise Nutrition
    • /
    • v.24 no.3
    • /
    • pp.25-31
    • /
    • 2020
  • [Purpose] Epidemiological evidence has shown that leisure-time physical activity and structured exercise before and after breast cancer diagnosis contribute to reducing the risk of breast cancer recurrence and mortality. Thus, in this review, we aimed to summarize the physical activity-dependent regulation of systemic factors to understand the biological and molecular mechanisms involved in the initiation, progression, and survival of breast cancer. [Methods] We systematically reviewed the studies on 1) the relationship between physical activity and the risk of breast cancer, and 2) various systemic factors induced by physical activity and exercise that are potentially linked to breast cancer outcomes. To perform this literature review, PubMed database was searched using the terms "Physical activity OR exercise" and "breast cancer", until August 5th, 2020; then, we reviewed those articles related to biological mechanisms after examining the resulting search list. [Results] There is strong evidence that physical activity reduces the risk of breast cancer, and the protective effect of physical activity on breast cancer has been achieved by long-term regulation of various circulatory factors, such as sex hormones, metabolic hormones, inflammatory factors, adipokines, and myokines. In addition, physical activity substantially alters wholebody homeostasis by affecting numerous other factors, including plasma metabolites, reactive oxygen species, and microRNAs as well as exosomes and gut microbiota profile, and thereby every cell and organ in the whole body might be ultimately affected by the biological perturbation induced by physical activity and exercise. [Conclusion] The understanding of integrative mechanisms will enhance how physical activity can ultimately influence the risk and prognosis of various cancers, including breast cancer. Furthermore, physical activity could be considered an efficacious non-pharmacological therapy, and the promotion of physical activity is probably an effective strategy in primary cancer prevention.

Influences of guideway geometry parameters and track irregularity on dynamic performances of suspended monorail vehicle-guideway system

  • He, Qinglie;Yang, Yun;Cai, Chengbiao;Zhu, Shengyang
    • Structural Engineering and Mechanics
    • /
    • v.82 no.1
    • /
    • pp.1-16
    • /
    • 2022
  • This work elaborately investigates the influences of the guideway geometry parameters and track irregularity on the dynamic performances of the suspended monorail vehicle-guideway system (SMVGS). Firstly, a spatial dynamic analysis model of the SMVGS is established by adopting ANSYS parameter design language. Then, the dynamic interaction between a vehicle with maximum design load and guideway is investigated by numerical simulation and field tests, revealing the vehicle-guideway dynamic features. Subsequently, the influences of the guideway geometry parameters and track irregularity on the dynamic performances of the SMVGS are analyzed and discussed in detail, and the reasonable ranges of several key geometry parameters of the guideway are also obtained. Results show that the vehicle-guideway dynamic responses change nonlinearly with an increase of the guideway span, and especially the guideway dynamic performances can be effectively improved by reducing the guideway span; based on a comprehensive consideration of all performance indices of the SMVGS, the deflection-span ratio of the suspended monorail guideway is finally recommended to be 1/1054~1/868. The train load could cause a large bending deformation of the pier, which would intensify the car-body lateral displacement and decrease the vehicle riding comfort; to well limit the bending deformation of the pier, its cross-section dimension is suggested to be more than 0.8 m×0.8 m. The addition of the track irregularity amplitude has small influences on the displacements and stress of the guideway; however, it would significantly increase the vehicle-guideway vibrations and rate of load reduction of the driving tyre.

Study on the water bursting law and spatial distribution of fractures of mining overlying strata in weakly cemented strata in West China

  • Li, Yangyang;Zhang, Shichuan;Yang, Yingming;Chen, Hairui;Li, Zongkai;Ma, Qiang
    • Geomechanics and Engineering
    • /
    • v.28 no.6
    • /
    • pp.613-624
    • /
    • 2022
  • A study of the evolution of overburden fractures under the solid-fluid coupling state was conducted based on the geological and mining characteristics of the coal seam depth, weak strata cementation, and high-intensity mining in the mining areas of West China. These mining characteristics are key to achieving water conservation during mining or establishing groundwater reservoirs in coal mines. Based on the engineering background of the Daliuta Coal Mine, a non-hydrophilic simulation material suitable for simulating the weakly cemented rock masses in this area was developed, and a physical simulation test was carried out using a water-sand gushing test system. The study explored the spatial distribution and dynamic evolution of the fractured zone in the mining overburden under the coupling of stress and seepage. The experimental results show that the mining overburden can be vertically divided into the overall migration zone, the fracture extension zone and the collapse zone; additionally, in the horizontal direction, the mining overburden can be divided into the primary fracture zone, periodic fracture zone, and stop-fracture zone. The scope of groundwater flow in the overburden gradually expands with the mining of coal seams. When a stable water inrush channel is formed, other areas no longer generate new channels, and the unstable water inrush channels gradually close. Finally, the primary fracture area becomes the main water inrush channel for coal mines. The numerical simulation results indicate that the overlying rock breaking above the middle of the mined-out area allows the formation of the water-conducting channel. The water body will flow into the fracture extension zone with the shortest path, resulting in the occurrence of water bursting accidents in the mining face. The experimental research results provide a theoretical basis for the implementation of water conservation mining or the establishment of groundwater reservoirs in western mining areas, and this theoretical basis has considerable application and promotion value.

Hydrogen sulfide protects from acute kidney injury via attenuating inflammation activated by necroptosis in dogs

  • Wang, Shuang;Liu, XingYao;Liu, Yun
    • Journal of Veterinary Science
    • /
    • v.23 no.5
    • /
    • pp.72.1-72.14
    • /
    • 2022
  • Background: The treatment of acute kidney injury (AKI), a common disease in dogs, is limited. Therefore, an effective method to prevent AKI in veterinary clinics is particularly crucial. Objectives: Hydrogen sulfide (H2S) is the third gaseous signal molecule involved in various physiological functions of the body. The present study investigated the effect of H2S on cisplatin-induced AKI and the involved mechanisms in dogs. Methods: Cisplatin-injected dogs developed AKI symptoms as indicated by renal dysfunction and pathological changes. In the H2S-treated group, 50 mM sodium hydrosulfide (NaHS) solution was injected at 1 mg/kg/h for 30 min before cisplatin injection. After 72 h, tissue and blood samples were collected immediately. We performed biochemical tests, optical microscopy studies, analysis with test kits, quantitative reverse-transcription polymerase chain reaction, and western blot analysis. Results: The study results demonstrated that cisplatin injection increased necroptosis and regulated the corresponding protein expression of receptor interacting protein kinase (RIPK) 1, RIPK3, and poly ADP-ribose polymerase 1; furthermore, it activated the expressions of inflammatory factors, including tumor necrosis factor-alpha, nuclear factor kappa B, and interleukin-1β, in canine kidney tissues. Moreover, cisplatin triggered oxidative stress and affected energy metabolism. Conversely, an injection of NaHS solution considerably reduced the aforementioned changes. Conclusions: In conclusion, H2S protects the kidney from cisplatin-induced AKI through the mitigation of necroptosis and inflammation. These findings provide new and valuable clues for the treatment of canine AKI and are of great significance for AKI prevention in veterinary clinics.