• Title/Summary/Keyword: body stiffness

Search Result 495, Processing Time 0.027 seconds

The Influence of the floor rigidity on front-loading washer installation and its vibrational behavior (설치면 강성에 따른 드럼세탁기의 동특성 및 설계대책)

  • Wee, Hoon;Cheong, J.D.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.248-251
    • /
    • 2004
  • The vibrational behavior of a front load washing machine is heavily influenced by the floor stiffness on which the washing machine is installed. In case the floor stiffness is extremely low like a wooden floor (we call it a 'soft floor, S/F'), it is quite probable that a washer's rigid body mode exists in the operating frequency range. In this case, the outer frame vibration level would be very high, but the mitigation scheme is quite limited except the excitation force abatement by acquisition of the optimal inertia in the internal vibratory system and the diaphragm's stiffness with the minimum force transfer.

  • PDF

Effect of Bone Cement Volume and Stiffness on Occurrences of Adjacent Vertebral Fractures after Vertebroplasty

  • Kim, Jin-Myung;Shin, Dong Ah;Byun, Dong-Hak;Kim, Hyung-Sun;Kim, Sohee;Kim, Hyoung-Ihl
    • Journal of Korean Neurosurgical Society
    • /
    • v.52 no.5
    • /
    • pp.435-440
    • /
    • 2012
  • Objective : The purpose of this study is to find the optimal stiffness and volume of bone cement and their biomechanical effects on the adjacent vertebrae to determine a better strategy for conducting vertebroplasty. Methods : A three-dimensional finite-element model of a functional spinal unit was developed using computed tomography scans of a normal motion segment, comprising the T11, T12 and L1 vertebrae. Volumes of bone cement, with appropriate mechanical properties, were inserted into the trabecular core of the T12 vertebra. Parametric studies were done by varying the volume and stiffness of the bone cement. Results : When the bone cement filling volume reached 30% of the volume of a vertebral body, the level of stiffness was restored to that of normal bone, and when higher bone cement exceeded 30% of the volume, the result was stiffness in excess of that of normal bone. When the bone cement volume was varied, local stress in the bony structures (cortical shell, trabecular bone and endplate) of each vertebra monotonically increased. Low-modulus bone cement has the effect of reducing strain in the augmented body, but only in cases of relatively high volumes of bone cement (>50%). Furthermore, varying the stiffness of bone cement has a negligible effect on the stress distribution of vertebral bodies. Conclusion : The volume of cement was considered to be the most important determinant in endplate fracture. Changing the stiffness of bone cement has a negligible effect on the stress distribution of vertebral bodies.

High-Performing Adhesive Bonding Fastening Technique For Automotive Body Structures

  • Symietz, Detlef;Lutz, Andreas
    • Journal of Adhesion and Interface
    • /
    • v.7 no.4
    • /
    • pp.60-64
    • /
    • 2006
  • In modern vehicle construction the search for means of weight reduction, improving durability, increasing comfort and raising body stiffness are issues of priority to the design engineer. The intelligent usage of many materials such as high strength steel, light-alloys and plastics enables a significant vehicle weight reduction to be achieved. The classical joining techniques used in the automobile industry need to be newly-evaluated since they often do not present workable solutions for such mixed-material connections, for example aluminium/steel. Calculation/simulation methods have made progress as a key factor for broader and more cost-effective implementation of structural bonding. This will lead to reduction of spotwelds and accelerate the car development. A special focus of the paper is the use of high strength steel grades. It will be shown that adhesive bonding is a key tool for yielding the potential of advanced high strength steel for low gauging without compromising the stiffness. The latest status of adhesive development has been described. Improvements with physical strength and glass temperature as well as of process relevant properties are shown. Also the situation regarding occupational hygiene is treated, showing that by further spotweld point reduction the emission around the working area can be even lowered against the current praxis. High performing lightweight design cannot longer do without high performing crash durable adhesives.

  • PDF

Study on The Stiffness Locking Phenomenon and Eigen Problem in Mindlin Plate (Mindlin 판의 강성 과잉 현상과 고유치에 관한 연구)

  • 김용우;박춘수;민옥기
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.2
    • /
    • pp.445-454
    • /
    • 1991
  • In this thesis, Mindlin plate element with nine nodes and three degrees-of-freedom at each node is formulated and is employed in eigen-analysis of a rectangular plates in order to alleviate locking phenomenon of eigenvalues. Eigenvalues and their modes may be locked if conventional $C_{0}$-isoparametric element is used. In order to reduce stiffness locking phenomenon, two methods (1, the general reduced and selective integration, 2, the new element that use of modified shape function) are studied. Additionally in order to reduce the error due to mass matrix, two mass matrixes (1, Gauss-Legendre mass matrix, 2, Gauss-Lobatto mass matrix) are considered. The results of eigen-analysis for two models (the square plate with all edges simply-supported and all edges built-in), computed by two methods for stiffness matrix and by two mass matrixes are compared with theoretical solutions and conventional numerical solutions. These comparisons show that the performance of the two methods with Gauss-Lobatto mass matrix is better than that of the conventional plate element. But, by considering the spurious rigid body motions, the element which employs modified shape function with full integration and Gauss-Lobatto mass matrix can elevate the accuracy and convergence of numerical solutions.

The Effects of leg length difference on Low Back Pain and joint stiffness (하지길이 차이가 요통과 관절경직에 미치는 영향)

  • Kim Dong-Hyun;Kim Suk-Bum;Baek Su-Jeong;Nam Tae-Ho;Kim Jin-Sang
    • The Journal of Korean Physical Therapy
    • /
    • v.14 no.4
    • /
    • pp.55-63
    • /
    • 2002
  • Human body balances right and left leg centering around pelvis and spine. Therefore, imbalance of lower extremity means disequilibrium of the body. The difference of lower extremity length can cause a number of clinic symptoms including scoliosis, low back pain, sacroiliac pain, and sports injury. In this study, we tried to analyze low back pain and joint stiffness resulting from the difference of lower extremity length. The subjects were 80 male students who are 20-25 years old. The results of this study were as following: 1. Low back pain depending on the difference of lower extremity length One group which the difference of lower extremity length is above 12mm showed average different length as 18.0mm, the other group which one is below 12mm showed as 6.3mm. A group of above 12mm had more severe low back pain than a group of below 12mm. 2. Joint stiffness depending on the difference of lower extremity length A group of above 12mm had more severe joint stiffness than a group of below 12mm.

  • PDF

Practical Turret Stiffness Calculation Model to Modify Lathe Structure (선반 구조변경을 위한 현장용 공구대 강성계산모델)

  • Heo, Seong-Hyeok;Kim, Su-Jin
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.5
    • /
    • pp.19-24
    • /
    • 2017
  • In this research, a practical stiffness calculation method is developed and applied for modifying the height of the headstock, turret, and tailstock of a CNC lathe to enlarge the turntable diameter. The casting structure is assumed to be a rigid body and the linear motion element to be an elastic spring to simplify the turret stiffness calculation model. The stiffness of the sliding guide and ball screw of the original lathe is measured with a push tester and LVDT sensor, and the turret stiffness of the modified lathe is predicted and compared with experimental results to verify the model. The measured stiffness of the original turret is $0.17kN/{\mu}m$ and that of the modified turret is $0.11kN/{\mu}m$, i.e., an 18% difference from the predicted result. The verified stiffness calculation model can be used to develop another modified lathe.

A Study on the Stress Analysis ofAxi-symetric Body with N on-symetric Load and N on-symetric Given Displacements (비대칭 하중을 받고 비대칭 변위가 주어진 축대칭 물체의 응력해석에 관한 연구)

  • 전효중;왕지석;최순열
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.14 no.4
    • /
    • pp.46-56
    • /
    • 1990
  • Stress analysis of axi-symetric body with non-symetric loading and non-symetric given displacements is investigated in this paper using the finite element method. As the non-symetric load and non-symetric given displacements of axi-symetric body are generally periodic functions of angle .theta., the nodal forces and nodal displacements can be expanded in cosine and sine series, that is, Fourier series. Furthermore, using Euler's formula, the cosine and sine series can be converted into exponential series and it is prooved that the related calculus become more clear. Substituting the nodal displacements expanded in Fourier series into the strain components of cylindrical coordinates system, the element strains are expressed in series form and by the principal of virtual work, the element stiffness martix and element load vector are obtained for each order. It is also showed that if the non-symetric loads are even or odd functions of angle ${\theta}$ the stiffness matrix and load vector of the system are composed with only real numbers and relatively small capacity fo computer memory is enough for calculation.

  • PDF

A Study on the Dynamic Modeling of a Hydrostatic Table (유정압 테이블의 동적 Modeling에 관한 연구)

  • 노승국;이찬홍;박천홍
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.3
    • /
    • pp.150-156
    • /
    • 1998
  • In this paper, a 3-DOF(Degree Of Freedom) rigid body model is developed for dynamic analysis of a hydrostatic table. The dynamic coefficients, stiffness and damping constant of each pad are calculated from the mass flow continuity condition. The validity of this model is examined in theoretical and experimental method. The dynamic behavior when mass unbalances and local variations of stiffness and damping of pads present is analyzed for real applications of hydrostatic table. Since the theoretical and experimental results show goof agreement. it can be said that the 3-DOF rigid body model is useful for the dynamic model of the table. The analysis reveals that the pitching motion is the dominant mode of vibration, It also reveals that unbalanced loads can increase amplitude of tilting motion and reduce natural frequencies and damping capacity of the hydrostatic table.

  • PDF

Characteristics of Vibration of Track and Vehicle Body According to Type of Track in Tunnel of High-Speed Railway Lines (고속철도 터널에서의 궤도 형식에 따른 궤도와 차체의 진동 특성)

  • Kim, Man Cheol;Jang, Seung Yup
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.1D
    • /
    • pp.125-132
    • /
    • 2006
  • In the present study, in order to elucidate the vibration characteristics of track and train body according to the type of track in tunnel, the vibration accelerations of the track and the KTX train body have been measured in tunnels of Kyong-Bu high-speed railway(HSR) lines, and the frequency analysis of the measured data has been performed. From this, the vibration characteristics of the track components such as rail, sleeper, ballast and slab, the tunnel lining and the vehicle body according to the type of track are investigated and their relation is analyzed. The test results show that the vibration of rail and vehicle body rapidly increases at 80Hz in tunnel, and that is much higher in the tunnel on which the concrete slab track is placed. According to the results of the present study, rail supporting stiffness can variate the vibration characteristics of the total system including the vehicle, and therefore the correlation between the vibration of vehicle should be taken into account to determine the supporting stiffness of the slab track.

On the Aeroelastic Characterisrics for the Flight Vehicle of Wing-Body Combination (익동체(翼胴體)의 공력탄성학적특성(空力彈性學的特性)에 관한 연구(硏究))

  • Hae-Kyong,Lee
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.10 no.1
    • /
    • pp.27-32
    • /
    • 1973
  • This paper shows the method for obtaining the body flutter velocity and frequency for flight body which consists of low aspect ratio wing and body combination by assuming slender body of cylinderical shell structure. The stiffness matrix of the cylinderical shell is represented from Donnel eq. by the finite difference method, and also unsteady aerodynamic influence matrix is represented by the Doublet Lattice Method of Albano & Rodden. The flutter matrix can be obtained from those matrices.

  • PDF