• Title/Summary/Keyword: body acceleration

Search Result 420, Processing Time 0.027 seconds

Characteristics of Body Vibration for Korean High Speed Train through On-line Test (시운전 시험을 통한 한국형 고속전철의 차체진동 특성)

  • Kim Young-guk;Kim Seog-won;Park Chan-Kyeong;Kim Ki-hwan
    • Proceedings of the KSR Conference
    • /
    • 2003.05a
    • /
    • pp.724-729
    • /
    • 2003
  • The prototype of Korean high speed train (KHST), composed of two power cars, two motorized cars and three trailer cars, has been designed, fabricated and tested by the domestic researchers. In this paper, the body vibration has been reviewed from the viewpoint of the vehicle's safety and the vibration limits for components and sub-assemblies mounted on the car-body using by the experimental method. The on-line test of KHST has been carried out up to 260 km/h in the KTX line and proved that KHST has no problems in the vehicle's safety and the vibration limits at this speed. And the characteristics of body vibrations has been predicted at 300 km/h and 350 km/h by fitting curve about the measured acceleration signals.

  • PDF

Motion characteristics of a floating wave energy converter with wave activating body type

  • Kim, Sung-soo;Lee, Jae-chul;Kang, Donghoon;Lee, Soon-sup
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.1
    • /
    • pp.244-255
    • /
    • 2019
  • Interest in renewable energy has been increasing in recent years for many reasons, and there have been many studies on new types of wave energy converters and mechanisms for them. However, in this paper, motion characteristics of a wave energy converter with a wave activating body type is studied with an experiment. In order to conduct the experiment, a simple wave activating body type's wave energy converter is proposed. Experimental variations consist of connection type and location. The connection type controls the rotation motions of structures, and the connection location controls the distance between structures. The movement of floating structures, such as rotation, velocity, and acceleration, is measured with a potentiometer and a motion capture camera. Using the recorded data, the motion characteristics derived from the experimental variations are investigated.

Real-Time Analysis of Occupant Motion for Vehicle Simulator (차량 시뮬레이터 접목을 위한 실시간 인체거동 해석기법)

  • Oh, Kwangseok;Son, Kwon;Choi, Kyunghyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.5
    • /
    • pp.969-975
    • /
    • 2002
  • Visual effects are important cues for providing occupants with virtual reality in a vehicle simulator which imitates real driving. The viewpoint of an occupant is sensitively dependent upon the occupant's posture, therefore, the total human body motion must be considered in a graphic simulator. A real-time simulation is required for the dynamic analysis of complex human body motion. This study attempts to apply a neural network to the motion analysis in various driving situations. A full car of medium-sized vehicles was selected and modeled, and then analyzed using ADAMS in such driving conditions as bump-pass and lane-change for acquiring the accelerations of chassis of the vehicle model. A hybrid III 50%ile adult male dummy model was selected and modeled in an ellipsoid model. Multibody system analysis software, MADYMO, was used in the motion analysis of an occupant model in the seated position under the acceleration field of the vehicle model. Acceleration data of the head were collected as inputs to the viewpoint movement. Based on these data, a back-propagation neural network was composed to perform the real-time analysis of occupant motions under specified driving conditions and validated output of the composed neural network with MADYMO result in arbitrary driving scenario.

Development of Performance Evaluation System for a High-speed train (고속열차의 주행 동적성능 평가시스템 개발)

  • Park, Eun-Churn;Kang, Hyung-Goo;Choi, Jun-Sung;Kim, Eun-Sung;Kim, Man-Cheol
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.3226-3236
    • /
    • 2011
  • In this paper, with the background features on which measuring the transverse left-right and up -down vibration of wheel, bogie and body by wireless measurement system, performance evaluation systems which can assess the running behavior of high speed trains based on UIC code 518-OR and evaluate the ride comfort of them based on ISO code 2631 and UIC code 513 were developed. The characteristics of dynamic vibration are generally analyzed by an acceleration of a car body of high speed train and the acceleration can be applied to evaluation of running safety. In this paper, also matching system of distance from tachometer and vibration from accelerometer was programmed in development software, and the SD card embedded system which prevent to loss of data in wireless measurement was mounted on this system. Finally the software perform to analysis with filtering and statistical post-process in the unit sections and zones and focus on developing the capability monitoring in the main control center. For the verification of this system, the running behavior and safety factor were analyzed based on field measured data of the Cheonjun-gunnum-sun turn out point in the new KTX railway.

  • PDF

Signal processing of accelerometers for motion capture of human body (인체 동작 인식을 위한 가속도 센서의 신호 처리)

  • Lee, Ji-Hong;Ha, In-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.8
    • /
    • pp.961-968
    • /
    • 1999
  • In this paper we handle a system that transform sensor data to sensor information. Sensor informations from redundant accelerometers are manipulated to represent the configuration of objects carrying sensors. Basic sensor unit of the proposed systme is composed of 3 accelerometers that are aligned along x-y-z coordination axes of motion. To refine the sensor information, at first the sensor data are fused by geometrical optimization to reduce the variance of sensor information. To overcome the error caused from inexact alignment of each sensor to the coordination system, we propose a calibration technique that identifies the transformation between the coordinate axes and real sensor axes. The calibration technique make the sensor information approach real value. Also, we propose a technique that decomposes the accelerometer data into motion acceleration component and gravity acceleration component so that we can get more exact configuration of objects than in the case of raw sensor data. A set of experimental results are given to show the usefulness of the proposed method as well as the experiments in which the proposed techniques are applied to human body motion capture.

  • PDF

Development of the Computer Model Considering Flexible Effect of a Large-sized Truck on the Bump Road (범프 로드에서 대형트럭 프레임의 탄성효과를 고려한 컴퓨터 모델 개발)

  • Moon, Il-Dong;Chi, Chang-Hun;Kim, Byoung-Sam
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.10 s.103
    • /
    • pp.1202-1210
    • /
    • 2005
  • This paper develops a computer model for estimating the bump characterisitcs of a cat)over type large-sized truck. The truck is composed of front and rear suspension systems, a frame, a cab, and ten tires. The computer model is developed using MSC.ADAMS. A shock absorber, a rubber bush, and a leaf spring affect a lot on the dynamic characteristic of the vehicle. Their stiffness and damping coefficient are measured and used as input data of the computer model. Leaf springs in the front and rear suspension systems are modeled by dividing them three links and joining them with joints. To improve the reliability of the developed computer model, the frame is considered as a flexible body. Thus, the frame is modeled by finite elements using MSC.PATRAN. A mode analysis is performed with the frame model using MSC.NASTRAN in order to link the frame model to the computer model. To verify the reliability of the developed computer model, a double wheel bump test is performed with an actual vehicle. In the double wheel bump, vortical displacement, velocity, acceleration are measured. Those test results are compared with the simulation results.

Analysis of the Acceleration Characteristics on the Conventional line for Korean High Speed Train- in il point of passing speed on the curve (한국형 고속전철의 기존선 주행 진동가속도 특성 분석 - 곡선 통과속도 중심으로)

  • 김영국;김석원;목진용;박찬경
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.222-227
    • /
    • 2004
  • Korean High Speed Train(KHST) has been tested on the high speed test line in Osung site, since it was developed through the G7 Project Plan in 2002. It was also tested on the conventional line such as KyongBu and Honan Line to know the possibility of increasing the limited speed for the high speed trains. This paper introduces the method to improve the speed on the conventional line with body lateral acceleration among the several considered issues and explains the parameters related to those analysis, such as the cant deficiency, the radius of curve, speed and etc. When a train pass on the curved track, the lateral accelerations of body are divided into the quasi-static and the maximum accelerations according to the UIC 518 which is the international specification for testing and approval of railway vehicles from the point of view of their dynamic behaviour, especially for safety and ride comfort. This paper shows that it is safe and comfort from the results of test when KHST runs on the conventional line with the curves and proposes that the limited speed of conventional curved line could be changed to a little higher speed if the analysises of other fields are completed.

  • PDF

Self-Tuning Gain-Scheduled Skyhook Control for Semi-Active Suspension Systems: Implementation and Experiment (반능동 현가시스템용 자기동조 게인조절형 스카이훅 제어기의 구현 및 실험)

  • Hong, Kyung-Tae;Huh, Chang-Do;Hong, Keum-Shik
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.3
    • /
    • pp.199-207
    • /
    • 2002
  • In this paper, a self-tuning gain-scheduled skyhook control for semi-active suspension systems is investigated. The dynamic characteristics of a continuously variable damper including electro-hydraulic pressure control valves is analyzed. A 2-d.o.f. time-varying quarter-car model that permits variations in sprung mass and suspension spring coefficient is considered. The self-tuning skyhook control algorithm proposed in this paper requires only the measurement of body acceleration. The absolute velocity of the sprung mass and the relative velocity of the suspension deflection are estimated by using integral filters. The skyhook gains are gain-scheduled in such a way that the body acceleration and the dynamic tire force are optimized. An ECU prototype is discussed. Experimental results using a 1/4-ear simulator are discussed. Also, a suspension ECU prototype targeting real implementation is provided.

Analysis of Behavior of Agricultural Reservoir with Combined Load by 3-D Numerical Analysis (3차원 수치해석을 통한 복합하중이 작용하는 농업용저수지의 거동 분석)

  • Song, Chang Seob;Woo, jea keun;Ahn, kwangkuk;Kim, Myeong Hwan
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.60 no.1
    • /
    • pp.59-65
    • /
    • 2018
  • The object of this paper was to analyze combined load acting on agricultural reservoir. This study was carried out to 3-D numerical modeling for displacement characteristic and seismic acceleration characteristic. The results of study were analyzed and summarized as follow. It was found that the displacement caused by combined load acting on railway and agricultural reservoir did not reflect the effect of load and the seismic wave consistently. The ground accelerations that occur in railway and dam were amplified because 3-D numerical analysis program interprets ground as an elastic body. Actual ground shows characteristics of elasticity and plasticity, so measured values will show different tendency. As a result of analyzing displacement characteristics, it is considered to be related to stiffness. The Ofunato seismic wave, the displacement (77.1 mm) of the body satisfied the allowable displacement (220 mm), but The Hachinohe seismic wave (282.8 mm) did not. It is considered that displacement caused by combined load is affected not only by acceleration but also by characteristics of materials.

IMPROVEMENT OF RIDE AND HANDLING CHARACTERISTICS USING MULTI-OBJECTIVE OPTIMIZATION TECHNIQUES

  • KIM W. Y.;KIM D. K.
    • International Journal of Automotive Technology
    • /
    • v.6 no.2
    • /
    • pp.141-148
    • /
    • 2005
  • In order to reduce the time and costs of improving the performance of vehicle suspensions, the techniques for optimizing damping and air spring characteristic were proposed. A full vehicle model for a bus is constructed with a car body, front and rear suspension linkages, air springs, dampers, tires, and a steering system. An air spring and a damper are modeled with nonlinear characteristics using experimental data and a curve fitting technique. The objective function for ride quality is WRMS (Weighted RMS) of the power spectral density of the vertical acceleration at the driver's seat, middle seat and rear seat. The objective function for handling performance is the RMS (Root Mean Squares) of the roll angle, roll rate, yaw rate, and lateral acceleration at the center of gravity of a body during a lane change. The design variables are determined by damping coefficients, damping exponents and curve fitting parameters of air spring characteristic curves. The Taguchi method is used in order to investigate sensitivity of design variables. Since ride and handling performances are mutually conflicting characteristics, the validity of the developed optimum design procedure is demonstrated by comparing the trends of ride and handling performance indices with respect to the ratio of weighting factors. The global criterion method is proposed to obtain the solution of multi-objective optimization problem.