• Title/Summary/Keyword: body acceleration

Search Result 422, Processing Time 0.029 seconds

Evaluation of Vehicle Body Stiffness by Measuring Local Vibration (위치별 진동 측정을 통한 차체강성평가)

  • Lee, Kyung Tae;Jun, Yong Du;Choi, Doo Seuk
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.6
    • /
    • pp.195-200
    • /
    • 2013
  • Road loads data are indispensable in the evaluation of BSR (Buzz, Squeak, and Rattle) of automotive parts/modules. However, there are uncertainties on the best measurement locations for representative body motion and for seat systems. In the present study, we measure road loads at four different locations of a body. A-pillars on the driver and passenger sides and left and right frame fronts of the front passenger seat mountings are selected to study the acceleration behavior at different locations. The measurements are conducted with passenger cars driving local roads at 50km/hr. The measured time-acceleration data are then transformed into PSD (power spectral density) data to compare the characteristics of local accelerations. By defining the deviated acceleration components from rigid body motion, the stiffness of vehicle body could be simply expressed in a quantitative basis. Measured data from two different vehicles are presented to demonstrate their relative vehicle body stiffness.

Attitude Estimation of the Moving Bodies using the Low-Cost MEMS Sensor (저가형 MEMS 센서를 이용한 움직이는 물체의 자세 추정)

  • Heo, Oh-Chul;Choi, Goon-Ho;Park, Ki-Heon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.9 no.2
    • /
    • pp.41-47
    • /
    • 2010
  • In this paper we suggest an improvement upon the previous method of estimating a body's attitude. This paper presents a method that overcomes the shortcomings of previous studies. Applying the method of separating the acceleration of gravity component from the accelerometer's output improves the performance of the attitude estimation and extends the scope. In order to apply the method of the attitude estimation in an actively moving body, a new acceleration value containing the acceleration of gravity is calculated. This paper also proposes the method which minimizes the estimation error in estimating the moving body's attitude which is changing rapidly. Finally, this paper suggests a method that detects the gyroscope's drift and compensates for this drift using accelerometer. Applying the method improves the performance of the attitude estimation.

The Effects of Upper Limb, Trunk, and Pelvis Movements on Apkubi Momtong Baro Jireugi Velocity in Taekwondo

  • Yoo, Si-Hyun
    • Korean Journal of Applied Biomechanics
    • /
    • v.26 no.3
    • /
    • pp.273-284
    • /
    • 2016
  • Objective: The purpose of this study was to investigate effects of upper limb, trunk, and pelvis kinematic variables on the velocity of Apkubi Momtong Baro Jireugi in Taekwondo. Method: Twenty Taekwondo Poomsae athletes (age: $20.8{\pm}2.2years$, height: $171.5{\pm}7.0cm$, body weight: $66.2{\pm}8.0kg$) participated in this study. The variables were upper limb velocity and acceleration; trunk angle, angular velocity, and angular acceleration; pelvis angle, angular velocity, and angular acceleration; and waist angle, angular velocity, and angular acceleration. Pearson's correlation coefficient was calculated for Jireugi velocity and kinematic variables; multiple regression analysis was performed to investigate influence on Jireugi velocity. Results: Angular trunk acceleration and linear upper arm punching acceleration had significant effects on Jireugi velocity (p<.05). Conclusion: We affirmed that angular trunk acceleration and linear upper arm punching acceleration increase the Jireugi velocity.

Age Difference in the Cephalad Attenuation of Upper Body Accelerations During Fast Speed Walking (빠른 보행시 상체 가속도의 머리 방향 감쇄의 연령차)

  • Jeon, Hyeong-Min;Kim, Ji-Won;Kwon, Yu-Ri;Heo, Jae-Hoon;Eom, Gwang-Moon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.2
    • /
    • pp.349-353
    • /
    • 2016
  • The purpose of this study was to investigate possible age differences in the attenuation of acceleration in the upper body (from pelvis through shoulder to head) during fast walking. Thirty young and 29 elderly subjects participated in this study. Wireless acceleration sensors were attached on head, shoulder, and pelvis. Subjects performed two trials of fast walking on a treadmill, where the fast speed was defined as 1.5 times of the comfortable speed. Root-mean-squared (RMS) accelerations of each axis were compared with age group and sensor position as independent factors. In the AP direction, the pelvis acceleration was greater in the young and the shoulder-to-head attenuation was also greater in the young (p<0.001), so that the head acceleration was comparable between age groups (p=0.581). In the ML direction, the pelvis acceleration was greater in the young and also the pelvis-to-shoulder attenuation was greater in the young (p<0.001), so that the head acceleration was greater in the elderly group (p<0.001). Insufficient attenuation ML acceleration in the elderly resulting in the greater acceleration in the head may deteriorate the balance control which utilize feedback signals from the sensory organs in head, e.g., vestibular and visual systems.

Optimal Design of the 4-cylinder Engine Rubber Mounts with Elastic Vibrations of Vehicle Body (차체의 탄성진동을 고려한 4기통 엔진 고무마운트의 최적설계)

  • 박철희;오진우
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.1
    • /
    • pp.163-181
    • /
    • 1998
  • In this study, the objective is determine the optimal design variable of engine mount system using the rubber mount of bush-type which is usually utilized in passive control to minimize vibrations of vehicle body or transmission from engine into body. The engine model adopted in this study is 4-cylinder, 4-stroke gasoline engine support- ed by 4-points. The system is modelled in 10 d.o.f.-rigid body motion of the engine & transmission in 6 d.o.f., elastic motion of vehicle body in 4 d.o.f.(1st torsional, 1st vertical and 1st & 2nd lateral bending vibration mode). To consider the elastic motion of vehicle body, find the eigenvalues and mode shapes of vehicle body by nodal testing and then determine the modal masses and stiffnesses of the body. The design variables of the engine mount system are locations, stiffness and damping coefficients of the rubber mounts(28 design variables). In case of considering the torque-roll axis for the engine, the design variables of the mount system are reduced to 22 design variables. The objective functions in optimal design process are considered by three cases, that is, 1) transmitted forces through engine mounts, 2) acceleration components of generalized coordinates for the vibration of vehicle body, 3) acceleration of specified location(where gear box) of body. three case are analyzed and compared with each other.

  • PDF

Characteristics of Vertical Acceleration at Center of Mass of the Body in Normal Gait (정상보행시 체중심의 수직 가속도 특성)

  • Yi, Jin-Bock;Kang, Sung-Jae;Kim, Young-Ho
    • Physical Therapy Korea
    • /
    • v.9 no.3
    • /
    • pp.39-46
    • /
    • 2002
  • In this study, vertical acceleration of center of mass was observed along normal gait phases in 9 healthy male volunteers (aged $25.7{\pm}2.18$). The developed wireless accelerometric device was attached on the intervertebral space between L3 and L4 using a semi-elastic waist belt. A three-dimensional motion analysis system, synchronized with the accelerometry, was used for detecting gait phases. There was no significant correlation between the body weight and the acceleration. The first peak curve covered loading response phase. The second downward peak point was matched accurately with the opposite toe-off. In mid-stance and terminal stance, the acceleration curve highly resembled the vertical ground reaction force curve. There was no significant difference in timing between the final upward peak point and the initial contact. Therefore, the developed accelerometry system would be helpful in determining determine temporal gait pattems in patients with gait disorders.

  • PDF

The Study on 3-Axes Acceleration Impact of Lower Limbs Joint during Gait (보행 시 하지 관절의 3축 충격가속도에 관한 연구)

  • Oh, Yeon-Ju;Lee, Chang-Min
    • Journal of the Ergonomics Society of Korea
    • /
    • v.28 no.3
    • /
    • pp.33-39
    • /
    • 2009
  • Impact force to a body during walking depends on walking speed, walking steps, the condition of the floors and shoes, and weight. The ground reaction force and the foot pressure can be measured instantaneous force easily, but it's difficult to find out the amount of transferring forces to the body. On the other hand, the acceleration has an advantage for analyzing the amount of transferring forces. However, most of studies about impact forces to the ground reaction during exercise have been limited to analyze instantaneous forces. The important thing is to evaluate characters and the amount of the impact force rather than the magnitude. Therefore, this study analyze the impact force using 3 axis acceleration in three dimensions (x; anterior-posterior, y; left-right and z; longitudinal axis) using three axis acceleration. As working speed increased, impact forces increased significantly. Impact forces on x axis and z axis are higher at lower limb than that of upper limb. However, impact force at the knee is higher than that of other parts on y axis regardless of walking speed significantly. In addition, relations of the impact forces as interaction of experiment factors as well as effect of each factor are analyzed.

Study of Human Perceptual Characteristics of Body Inclination Using a Tilt Bed

  • Inooka, Hikaru;Kim, HiSik
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.94.2-94
    • /
    • 2001
  • This paper investigates human discomfort response to the foot-to-head acceleration. During ambulance transport, a patient suffers from the foot-to-head acceleration, which might deteriorate his illness. To investigate the relationship between the ride discomfort and the foot-to-head acceleration, experiments were performed using a van type automobile similar to an ambulance. The experimental results show that head-ward acceleration is more uncomfortable than the foot-ward acceleration. For further investigation of the difference of ride discomfort caused by the direction of acceleration, two experiments were peformed using a tilt bed. In these experiments, foot-to-head acceleration is applied to the subjects by tilting the bed. Using a tilt bed, we investigated two things; relationship between discomfort and inclination of the bed ...

  • PDF

A Study ef Biomechanical Response in Human Body during Whole-Body Vibration through Musculoskeletal Model Development (전신 진동운동기 사용시 인체에 대한 생체역학적 특성 분석을 위한 가상 골격계 모델의 개발 및 검증)

  • Choi, Hyun-Ho;Lim, Do-Hyung;Hwang, Seon-Hong;Kim, Young-Ho;Kim, Han-Sung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.5
    • /
    • pp.155-163
    • /
    • 2008
  • This study investigated biomechanical response through the 3-dimensional virtual skeletal model developed and validated. Ten male subjects in standing posture were exposed to whole body vibrations and measured acceleration on anatomical of interest (head, $7^{th}$ cervical, $10^{th}$ thoracic, $4^{th}$ lumbar, knee joint and bottom of the vibrator). Three dimensional virtual skeletal model and vibration machine were created by using BRG LifeMOD and MSC.ADAMS. The results of forward dynamic analysis were compared with results of experiment. The results showed that the accuracy of developed model was $73.2{\pm}19.2%$ for all conditions.

The Evaluation of Seismic Performance of Dam By Shaking Table Tests (진동대시험을 이용한 댐의 내진성능평가)

  • Hwang, Seong-Chun;Oh, Byung-Hyun;Sim, Hyung-Seob;Kang, Bo-Soon
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2005.03a
    • /
    • pp.110-117
    • /
    • 2005
  • This paper deals the shaking table tests with 1/100 scaled model followed by Scott & Iai(1989)'s similitude law for OO dam main desging section to understand nonlinear behavior characteristics of concrete dam body by earthquake wave. As earthquake wave, Hachinohe and Elcentro waves were used and acceleration and displacements are measured to analyze behaviors of dam body. For ground maximum acceleration range ($0.3^{\sim}0.9g$), the results showed linear behavior regardless of ground maximum acceleration and secured safety of structure. To analyze the behavior of dam after tension cracking, 3cm-notch was placed at the critical section of over-flowing section. As results of applying Hachinohe wave(0.8g), Even though tension cracks were formed at over-flowing section by Hachinohe wave(0.8g), it showed that the dam is stable for supporting upper stream part of water tank of dam.

  • PDF