• 제목/요약/키워드: body acceleration

검색결과 422건 처리시간 0.034초

Gait Feature Vectors for Post-stroke Prediction using Wearable Sensor

  • Hong, Seunghee;Kim, Damee;Park, Hongkyu;Seo, Young;Hussain, Iqram;Park, Se Jin
    • 감성과학
    • /
    • 제22권3호
    • /
    • pp.55-64
    • /
    • 2019
  • Stroke is a health problem experienced by many elderly people around the world. Stroke has a devastating effect on quality of life, causing death or disability. Hemiplegia is clearly an early sign of a stroke and can be detected through patterns of body balance and gait. The goal of this study was to determine various feature vectors of foot pressure and gait parameters of patients with stroke through the use of a wearable sensor and to compare the gait parameters with those of healthy elderly people. To monitor the participants at all times, we used a simple measuring device rather than a medical device. We measured gait data of 220 healthy people older than 65 years of age and of 63 elderly patients who had experienced stroke less than 6 months earlier. The center of pressure and the acceleration during standing and gait-related tasks were recorded by a wearable insole sensor worn by the participants. Both the average acceleration and the maximum acceleration were significantly higher in the healthy participants (p < .01) than in the patients with stroke. Thus gait parameters are helpful for determining whether they are patients with stroke or normal elderly people.

소형구 속도 증폭을 위한 사보조립체 디자인 최적화 연구 (A Study on the Optimization of Sabot Assembly Design for Micro Ball Velocity Multiplication)

  • 박근휘;진두한;김태연;강형;정동택
    • 한국군사과학기술학회지
    • /
    • 제23권1호
    • /
    • pp.37-42
    • /
    • 2020
  • This study is for a bulletproof experiment through speed acceleration of steel ball(2.385 mm) at the laboratory level. The secondary propulsion method is used for speed acceleration, which uses a sabot assembly consisting of a sabot body, a plunger, water, and a sabot cap. At the core of the secondary drive, it is important that the energy in the water of the private particle is transferred well to the steel ball. The experiment was conducted by selecting a plunger that pushes water and water charged with variables. judging that the longer the contact time, the greater the energy transferred to the steel ball. As a result of experiments with each variable, the amount of water does not affect the speed acceleration efficiency of the steel ball and, when the length of the plunger is increased by 200 %, the speed of the steel ball can be accelerated up to 130 m/s.

Study on the Gait Pattern of the Aged with Lower Limbs Orthosis

  • Kim, Kyong;Kim, Seong-Hyun;Kim, Young-Chul;Kwon, Tae-Kyu;Hong, Chul-Un;Kim, Nam-Gyun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.2444-2447
    • /
    • 2005
  • The purpose of this study was to analyze the gait motion of the aged with a lower limbs orthosis. The gait motion was analyzed with and without lower limbs orthosis using APAS 3D Motion Analysis System. The pattern of lower limbs motion was tracked based on four targets attached to the body of the subject. The targets were positioned at hip, knee, ankle, and foot. The parameters measured were the displacement, the velocity, and the acceleration of the four targets. The improvement in the measured values on the displacement and the velocity of the four targets were small with the orthosis due to inconvenience of wearing it, but the increase in the acceleration was large due to the elastic force of the rubber actuator. Especially, the increase of the acceleration of foot with lower limbs orthosis seems to help the gait motion of the elderly.

  • PDF

공조용 압축기 배관계의 과도진동 예측 및 저감설계 (Prediction and Reduction of Transient Vibration of Piping System for a Rotary Compressor)

  • 유상모;정의봉;한형석
    • 한국소음진동공학회논문집
    • /
    • 제21권8호
    • /
    • pp.733-740
    • /
    • 2011
  • This paper deals with the process to identify the transient exciting force generated from a rotary compressor. The compressor was assumed to be a rigid body. The equation of motion of a rigid compressor supported by three mounts was derived with 6 degree-of-freedom. The exciting forces at the center of mass of the compressor were estimated from the acceleration data measured at compressor shell. Compressor-pipe system was modeled numerically. The accelerations of compressor and pipe were predicted numerically by using the estimated exciting force. A new shape of pipe model was proposed to reduce the vibration. In the prediction by the method in this paper, the maximum acceleration of the pipe could be reduced by 53.7 % at the steady-state and by 12 % at the transient process. In the real experiments, the maximum acceleration of the pipe was reduced by 54.2 % at steady-state and 14.7 % at the transient process. It was verified that the numerical results showed good agreement with experimental results.

UIC 518의 진동 가속도 계측을 통한 한국형 고속전철의 350km/h 주행 동적 거동 평가 (Estimation of the Dynamic Behavior for Korean High Speed Train at 350km/h using the Accelerations according to the UIC Code 518OR)

  • 김기환;김영국;김석원;목진용;박찬경
    • 한국철도학회논문집
    • /
    • 제9권5호
    • /
    • pp.544-549
    • /
    • 2006
  • The characteristics of dynamic vibration are generally analyzed by an acceleration of a car body of high speed train and the acceleration can be applied to evaluation of running safety. The test of process and the analysis method about it are well explained on UIC Code 518 OR which is the spacial international standard about running safety and dynamic behavior on the line test for railway vehicle. Korean High Speed Train designed to operate at speed 350km/h has been tested on high speed line since it was developed in 2002 and it recorded the highest speed 352.4km/h at the 16th Dec. 2004 in Korea. This paper includes the analysis of running behavior of this train at speed 350km/h and the analysis of dynamic safety is presented in it, extending to the range of high speed while the UIC 518 limit the speed below 200km/h.

한국형 고속전철의 주행조건에 따른 진동특성 분석에 관한 연구 (A Study on the Vibration Characteristics due to the Running Conditions for Korean High Speed Train)

  • 박찬경;한영재;김영국;김석원;최강윤
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2003년도 추계학술대회 논문집(I)
    • /
    • pp.125-130
    • /
    • 2003
  • Korean High Speed Train (KHST) designed to operate at 350km/h has been tested on high speed line in JungBu site since it was developed in 2002. The dynamic performances of railway vehicle are generally stability, safety and ride comfort. The stability performance of KHST was proved that it is stable at 400Km/h through Roller Rig test. The safety and ride comfort need to be predicted the capability of it at 350km/h by the on-line test because KHST is testing at 300km/h up to now. Therefor, in this paper, the safety and ride comfort at 350km/h are predicted the performance using the acceleration results at 300kw/h and these results show that the KHST's dynamic performances are very good. Also, it illustrate the two cases occurred the abnormal vibration of KHST during some on-line tests. The first case is that the variation of vertical acceleration of wheel is analyzed when an abrasion occur on wheel. The second case is that the lateral acceleration of wheel, bogie and body are analyzed when the KHST is unstable at high speed. The occurrences of these special phenomena were due to the some faults of the suspension and braking systems and the faults were improved. In present, it is testing with safety.

  • PDF

스마트폰 센서 기반 상황인식 시스템 연구 및 설계 (Research and Design of Smart Phone Sensor-based Context-aware System)

  • 윤태하;윤성욱;고주영;김현기
    • 한국멀티미디어학회논문지
    • /
    • 제18권3호
    • /
    • pp.408-418
    • /
    • 2015
  • This paper describes the design and implementation of situation recognition system with smart phone sensors, which recognizes the dangerous situation at anytime, anywhere through intuitive data analysis of the combination of the sensor. The implemented system consists of wearable heart rate sensor and acceleration sensor of smart phone instead of existing sensor that is attached to the body. It is also designed to get more effective results of recognition about the dangerous situation using merged displacement values of acceleration sensor and heart rate sensor which are measured in the process of recognizing dangerous situations. This research, in accordance with the wide penetration of smartphones, achieves the fast status determination through the combination of an acceleration sensor and a heart rate sensor applied to its own status perception algorithm for anyone who needs the stable perception of risk without the need for a separate provision of the sensor.

Optimization of Suspension Under the Condition of Curved Track in Railway Vehicle

  • Choi, Jong Yoon;Li, Zheng Yuan;Baek, Seung Guk;Song, Ki Seok;Koo, Ja Choon;Choi, Yeon Sun
    • International Journal of Railway
    • /
    • 제7권2호
    • /
    • pp.57-63
    • /
    • 2014
  • This paper presents the optimization of suspension characteristics under the condition of curved track railway vehicles. Reducing lateral acceleration on curved track is an issue for high-speed railway vehicles. In terms of curved track running environments, reducing the lateral vibration of railway vehicles is critical to safety and curving performance. The properties of lateral damping and stiffness of both primary and secondary suspension show effect on wheel-set, bogie and car-body. Analysis for reducing the lateral vibration of rail vehicles with respect to the characteristics of both primary and secondary suspension has been developed using ADAMS/Rail. Response Surface Method has been chosen for the purpose of verifying correlation effects among design parameters. Also, this paper suggests the method for designing optimal suspension of railway vehicles on curved track. The optimization result indicates decrement of lateral acceleration on wheel-set by 3% and bogie by 1% on curved track. Finally, this paper comes to the conclusion that suspension system of railway vehicle (KTX I) is properly designed when regarding lateral vibration of railway vehicle on diverse curved track condition.

인체운동에 있어서 주관절의 운동학적 분석 (Kinetic analysis of the elbow joint in human motion)

  • 노태환;김식현;김재헌
    • PNF and Movement
    • /
    • 제5권1호
    • /
    • pp.49-56
    • /
    • 2007
  • Objectives : We find that the reaction force on the elbow joint during elbow flexion, extension with and without an object in the hand can be calculated the equations of motion that the sum of the torque and the sum of the force acting on the elbow joint must be zero and (moment of inertia x angular acceleration) and (mass x acceleration). Methods : we have calculated the equations of motion (${\Sigma}F=0$, ${\Sigma}{\tau}=0$, ${\Sigma}F=ma$, ${\Sigma}{\tau}=Ia$) to investigate the reaction force on the elbow joint during elbow flexion, extension by means of the simplified free-body technique for coplanar forces. Results : we found that the reaction force on the elbow joint during elbow flexion, extention as constant acceleration motion is more than constant velocity, static motion. Also, we found that the relation between during flexion and during extension like this ; $J_{flexion}$ < $J_{extension}$.

  • PDF

인체진동이 뇌파변동리듬에 미치는 영향평가 (Evaluation on the Effect of Whole Body Vibration on EEG Frequency-Fluctuation)

  • 민병찬;김형욱;김지관
    • 산업경영시스템학회지
    • /
    • 제30권4호
    • /
    • pp.71-77
    • /
    • 2007
  • In this study, reactions of central nervous systems working against different conditions of forced frequency and acceleration were measured and analyzed. The experiment are conducted with health men. The steady vibration conditions of forced frequency (0.315m/s2-1.0Hz, 0.315m/s2-10Hz and 10Hz-1.0m/s2) are used and the waves of EEG (Electroencephalogram) are measured. As a result, this paper shows that the ${\alpha}-wave$ of frontal lobe transfers from low to high frequency band under the vibration environment. Additionally, the average frequency of ${\alpha}-wave$ is higher under the vibration than under non-vibration environment. In the case of forced frequency of 1.0Hz-0.315m/s2, the feeling with the vibration are nearly same compared with the non-vibration condition. But in the case of 10Hz-1.0m/s2, uncomfortable feeling increased compared with the non-vibration condition. This study also shows the relationship between fluctuation slop and feeling. From this study, it is found that the effect of vibration on human depends on acceleration characteristics. Highly accelerating vibration is more harmful to human.