• Title/Summary/Keyword: bluegill sunfish

Search Result 3, Processing Time 0.015 seconds

Utilization of fish gut analysis to elucidation of microcrustacean species composition (cladoceran and copepoda) in a shallow and vegetated lake (Jangcheok Lake, South Korea)

  • Choi, Jong-Yun;Jeong, Kwang-Seuk;Lee, Eunkyu;Choi, Kee-Ryong;Joo, Gea-Jae
    • Journal of Ecology and Environment
    • /
    • v.37 no.3
    • /
    • pp.147-153
    • /
    • 2014
  • Structural heterogeneity results in different spatial distributions of microcrustaceans. Thus, in ecosystems with excessive macrophyte development, it may be difficult to determine the microcrustacean species composition. Given the importance of microcrustaceans in the food web, the elucidation of microcrustacean diversity is essential. In vegetated habitats, bluegill sunfish can prey on microcrustaceans, and therefore have a potential role as microcrustacean monitoring agents. In the present study, we compared microcrustacean species compositions in the field with those in the guts of bluegill, in Jangcheok Lake, South Korea. Our results showed that the number of microcrustacean species was higher in bluegill guts than in the field. Further, microcrustacean species, such as Daphnia galeata, Graptoleveris testudinaria, Leydigia leydigii, Rhynchotalona sp., and Simocephalus exponisus, were found only in bluegill guts. Our findings verify the validity of the fish gut analysis to monitor microcrustacean species compositions and to clarify spatial distributions of microcrustacean species in structurally heterogeneous ecosystems with excessive macrophyte development.

Genetic Distribution Pattern of Bluegill Sunfish Lepomis macrochirus in Freshwater Ecosystems across Korea

  • Lau, Hwee Hui;Huang, Jingting;Kwan, Ye-Seul;Lee, Wan-Ok;Won, Yong-Jin
    • Animal Systematics, Evolution and Diversity
    • /
    • v.25 no.3
    • /
    • pp.325-329
    • /
    • 2009
  • Lepomis macrochirus from the family Centrarchidae, commonly known as Bluegill sunfish, is an introduced freshwater fish in Korea that thrives in lakes, ponds, reservoirs and rivers. Since its introduction into Korea in 1969, Lepomis macrochirus has rapidly dispersed out and increased in number almost all over the freshwater ecosystems in Korea. Consequently this species causes a severe ecological problem, threatening native fishes due to its omnivorous foraging behaviors upon fish juveniles and many freshwater invertebrates. To address population genetic structure of L. macrochirus, 74 fish samples from 10 populations were collected and compared for their mitochondrial D-loop control region. As the result we found that the genetic diversity of L. macrochirus is extremely low such as resulting only four haplotypes with a few nucleotide differences among them. Analysis of molecular variance (AMOVA) revealed that the source of population genetic variation is largely retained in the comparisons among individuals within populations, while it is relatively low with slight significance at the highest hierarchical group. This distribution pattern differs from what is expected when biogeography is under the influence of natural geographic barriers such as mountain ranges in Korea. Instead the result is accord with the influential role of random spreading events facilitated by local people for aquaculture and fishing, and subsequent dispersals since its single point of introduction into Korea.

Fish Passage Assessments in the Fishway of Juksan Weir Constructed in the Downstream Area of Youngsan-River Watershed (영산강수계의 죽산보에 설치된 어도에서 어류의 이동성 평가)

  • Park, Chan-Seo;An, Kwang-Guk
    • Journal of Environmental Science International
    • /
    • v.23 no.8
    • /
    • pp.1513-1522
    • /
    • 2014
  • Fish passage asssessments were conducted in the fishway at Juksan Weir, which was constructed as a four-major rivers project in the downstream area of Youngsan-River Watershed. For the research, fish-movements/migrations were analyzed for seven times from April ~ October, 2013 using an approach of fish trap-setting. Fish fauna and compositions were analyzed in the fishway, and seasonal- and diel-movement patterns were analyzed in relation to current velocity in the fishway. Also, abundances of exotic fishes such as bluegill sunfish (Lepomis macrochirus), large-mouth bass (Micropterus salmoides), and white curcian carp (Carassius cuvieri) were monitored in the fishway. Current velocity(n = 18) in the fishway showed large variations ($0.82{\pm}0.63m/s$) depending on the location of the fish trap-setting and this physical factor influenced the fish movements. Fish movements, based on the CPUE of individuals, in the fishway was greater in slower velocity (mean: 0.36 m/s, range: 0.10~1.54 m/s) than faster velocity (mean: 1.51 m/s, range: 0.90~1.90 m/s). Seasonal analysis of fish movements showed that most frequent uses (8 speices and 591 individuals, 66.2% of the total) of the fishway occurred in spring period(i.e., June). Diel movement analysis, in the mean time, showed highest in the time period of 00:00 ~ 3:00 am (7 species and 281 individuals, 20.9% of the total). The efficient managements in the fishway at Juksan Weir are required in relation to the hydrological regime.