• Title/Summary/Keyword: blue-shelled egg

Search Result 2, Processing Time 0.017 seconds

Physicochemical and Functional Characterization of Blue-Shelled Eggs in Korea

  • Sujiwo, Joko;Kim, Dongwook;Yoon, Ji-Yeol;Kim, Hanna;Kim, Jung-Soo;Lee, Sung-Ki;Jang, Aera
    • Food Science of Animal Resources
    • /
    • v.37 no.2
    • /
    • pp.181-190
    • /
    • 2017
  • The aim of this study was to compare the quality and physicochemical characteristics of blue-shelled eggs (BE) and conventional eggs (CE). Proximate composition, quality, pH value, shell color, collagen content, fatty acid composition, total cholesterol, ${\alpha}$-glucosidase inhibition activity, and antioxidation activity were determined. The proximate composition, general qualities, and pH values of CE and BE showed no significant differences, except in moisture composition, weight, and shell thickness. Moisture content and weight of BE were significantly lower than those of CE. However, shell thickness and weight of BE were higher than those of CE (p<0.05). Lightness of BE was significantly higher than that of CE (85.20 vs. 58.80), while redness ($a^*$) and yellowness ($b^*$) of BE were lower than those of CE ($a^*$: -4.75 vs. 14.20; $b*$: 10.45 vs. 30.63). The fatty acid [C18:1n7 (cis-vaccenic acid) and C18:3n6 (gamma-linolenic acid)] contents of BE were significantly higher than those of CE. The total cholesterol contents of BE and CE were similar. DPPH radical scavenging activity of BE was significantly higher than that of CE (40.78 vs. 35.35). Interestingly, ${\alpha}$-glucosidase inhibition activity of whole egg and egg yolk in BE (19.27 and 36.06) was significantly higher than that of whole egg and egg yolk in CE (13.95 and 32.46). This result indicated that BE could potentially be used as a functional food material. Further studies are required to evaluate the specific compounds that affect functional activity.

Genetic evaluation of eggshell color based on additive and dominance models in laying hens

  • Guo, Jun;Wang, Kehua;Qu, Liang;Dou, Taocun;Ma, Meng;Shen, Manman;Hu, Yuping
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.8
    • /
    • pp.1217-1223
    • /
    • 2020
  • Objective: Eggshells with a uniform color and intensity are important for egg production because many consumers assess the quality of an egg according to the shell color. In the present study, we evaluated the influence of dominant effects on the variations in eggshell color after 32 weeks in a crossbred population. Methods: This study was conducted using 7,878 eggshell records from 2,626 hens. Heritability was estimated using a univariate animal model, which included inbreeding coefficients as a fixed effect and animal additive genetic, dominant genetic, and residuals as random effects. Genetic correlations were obtained using a bivariate animal model. The optimal diagnostic criteria identified in this study were: L🟉 value (lightness) using a dominance model, and a🟉 (redness), and b🟉 (yellowness) value using an additive model. Results: The estimated heritabilities were 0.65 for shell lightness, 0.42 for redness, and 0.60 for yellowness. The dominance heritability was 0.23 for lightness. The estimated genetic correlations were 0.61 between lightness and redness, -0.84 between lightness and yellowness, and -0.39 between redness and yellowness. Conclusion: These results indicate that dominant genetic effects could help to explain the phenotypic variance in eggshell color, especially based on data from blue-shelled chickens. Considering the dominant genetic variation identified for shell color, this variation should be employed to produce blue eggs for commercial purposes using a planned mating system.