• Title/Summary/Keyword: blue phosphor

Search Result 213, Processing Time 0.025 seconds

Photoluminescence properties of $Gd_{1-x}Ln_xCa_3(GaO)_3(BO_3)_4$ (Ln=Eu, Tb, Tm) under UV excitation

  • Kyung, Hyun-Ai;Jung, Ha-Kyun;Seong, Tae-Yeon
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08b
    • /
    • pp.1565-1568
    • /
    • 2007
  • A borate compound was adopted as new host material for $Eu^{3+}$, $Tb^{3+}$ and $Tm^{3+}$ activators. The phosphor samples, $Gd_{1-x}Eu_xCa_3(GaO)_3(BO_3)_4$, $Gd_{1-x}Tb_xCa_3(GaO)_3(BO3)_4$ and $Gd_{1-x}Tm_xCa_3(GaO)_3(BO_3)_4$ have been synthesized by conventional solid-state reaction. The crystalline phase for the resulting powders was identified using an X-ray diffraction $system^1$. Their photoluminescence properties under the excitation of UV ray were investigated. The Eu, Tb or Tm-doped $GdCa_3(GaO)_3(BO_3)_4$ emits efficient red, green or blue light, respectively. It was observed that the optimum concentration of Eu or Tb activator for the borate host was much higher than other $Eu^{3+}$ or $Tb^{3+}-doped$ phosphors.

  • PDF

Analysis on the Aging Process of ac-Plasma Display Panel

  • Park, Min-Soo;Park, Deok-Hai;Kim, Bo-Hyun;Ryu, Byung-Gil;Kim, Sung-Tae;Seo, Gi-Weon;Kim, Dae-Young;Park, Seung-Tea;Kim, Jong-Bin
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.126-129
    • /
    • 2006
  • AC-plasma display panels were examined before and after the aging process to analyze the effect of the aging process. The gas analysis was done to detect the impurity gases out of the MgO film and phosphor by a residual gas analyzer. There were no differences found in the components. The MgO film was analyzed to find out the effect of an ion bombardment due to discharge. The surface roughness of the MgO film was different from regional groups due to the different degree of ion bombardments. XPS analysis showed that the 8 hour aging process was not sufficient to remove $Mg(OH)_2$ and $MgCO_3$ existed on the MgO surface. Photoluminescence measurement showed the small deterioration of blue and green phosphor.

  • PDF

Studies on thermal annealing effect and electron beam induced degradation of ALD-grown CaS:Pb blue phosphor (원자층증착방법으로 성장한 CaS:Pb 청색 형광체 박막의 열처리 효과와 전자빔 조사에 의한 열화현상 연구)

  • Yun, Sun-Jin;Park, Sang-Hee;Byun, Jung-Woo;Suh, Kyung-Soo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.04b
    • /
    • pp.93-96
    • /
    • 2002
  • 원자층증착법으로 제조한 청색 CaS:Pb 박막 형광체에 대한 열처리 및 전자빔 조사 효과찰 연구하였다. CaS:Pb 형광 박박의 열처리는 500 - $700^{\circ}C$ 온도범위에서 급속 열처리 공정으로 수행하였고, 1 kV, $20{\mu}A/cm^{2}$ 조건의 전자빔을 연속적으로 조사하여 열화를 가속시킨 후 처리 전, 후의 재료 및 cathololuminescence (CL) 특성을 비교 분석하였다. 원자층증착법으로 성장한 CaS:Pb 박막은 화학적 조성과 결정성이 우수하여 후속 열처리에 의해 발광특성이 크게 증가하는 경향을 보이지 않았으며, 전자빔에 의한 열화 정도는 판매되고 있는 형광체에 비하여 오히려 적었다. CL 강도가 초기값의 50%로 감소할 때까지 전자빔을 조사한 후에도 주목할만한 결정성 및 조성의 변화는 관찰되지 않았으나 전자빔 조사에 의해 표변에 두께 10 nm 내외의 탄소오염층이 형성됨을 알 수 있었다.

  • PDF

Screening of spherical phosphors by electrophoretic deposition for full-color field emission display application

  • Kwon, Seung-Ho;Cho, sung-Hee;Yoo, Jae-Soo;Lee, Jong-Duk
    • Journal of Korean Vacuum Science & Technology
    • /
    • v.3 no.1
    • /
    • pp.79-84
    • /
    • 1999
  • the photolithographic patterning on an indium-tin oxide (ITO) glass and the electro-phoretic deposition were combined for preparing the screen of the full-color field emission display(FED). the patterns with a pixel of 400$\mu\textrm{m}$ on the ITO-glass were made by etching the ITO with well-prepared etchant consisting of HCL, H2O, and HNO3. Electrophoretic method was carried out in order to deposit each spherical red (R), green(G), and blue (B) phosphor on the patterned ITO-glass. The process parameters such as bias voltage, salt concentration, and deposition time were optimized to achieve clear boundaries. It was found that the etching process of ITO combined with electrophoretic method was cost-effective, provided distinct pattern, and even reduced process steps compared with conventional processes. The application of reverse bias to the dormant electrodes while depositing the phosphors on the stripe pattern was found to be very critical for preventing the cross-contamination of each phosphor in a pixel.

  • PDF

Development of LED Alternative to Standard Illuminant A Using Emission Spectrum Control (발광 스펙트럼 제어를 통한 표준광원 A 대체형 LED 개발)

  • Cho, Jae-Hyun;Jang, Min-Suk;Kim, Dong-Won;Kim, Wan-Ho;Kim, Gi-Hoon;Kim, Kang-Woong;Song, Sang-Bin;Kim, Jae-Pil
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.11
    • /
    • pp.26-32
    • /
    • 2011
  • In this study, a standard illuminant A type LED that has similar emission spectrum as the standard illuminant A was developed using LED chip(emission peak: 405[nm]) and four types of phosphors(blue, green orangered and red). Using the design of experiment for spectrum control, the trend of the change of spectrum shape influenced by the change of interaction among phosphors and their density could be examined. Computer simulation through the optimization of the design of experiment revealed that, among four phosphors, the most influential one on the shape of the spectrum was green phosphor. Using the obtained optimal combination ratio of the four phosphors, an alternative LED illuminant to the actual standard illuminant A was developed and the spectrums of these two were confirmed identical. Using this standard illuminant A type LED, a portable transmittance meter with the range of measurement error of ${\pm}1.0$[%] was developed.

Synthesis and Luminescence of Sr2Si5N8:Eu2+ Red Phosphor for High Color-Rendering White LED (고연색 LED용 적색 Sr2Si5N8:Eu2+ 형광체의 합성 및 발광특성 연구)

  • Lee, Sung Hoon;Kim, Jong Su;Kang, Tae Wook;Ryu, Jong Ho;Lee, Sang Nam
    • Journal of the Semiconductor & Display Technology
    • /
    • v.16 no.4
    • /
    • pp.11-15
    • /
    • 2017
  • Red phosphors, $Sr_2Si_5N_8:Eu^{2+}$, were synthesized as a single-phase crystal structure by optimizing carbon and $Eu^{2+}$ contents in a carbothermal reduction nitridation method. With increasing $Eu^{2+}$ contents, the photoluminescence spectra were red-shifted from 600 nm peak for 1 mol% for to 700 nm for 7 mol%. It was suggested that this red shift is attributed to the energy transfer from one low-energy sited $Eu^{2+}$ (1) to other high-energy sited $Eu^{2+}$ (2). Finally, the best red sample (620 nm emission peak and 80 nm half width for 3 mole% of $Eu^{2+}$) was packaged on a Blue LED together with two additional green and yellow phosphors, the fabricated White LED showed a high color-rendering index of 90 and white color coordinates of x= 0.321 and y = 0.305.

  • PDF

Photoluminescence properties of Mn4+-activated Li2ZnSn2O6 red phosphors

  • Choi, Byoung Su;Lee, Dong Hwa;Ryu, Jeong Ho;Cho, Hyun
    • Journal of Ceramic Processing Research
    • /
    • v.20 no.1
    • /
    • pp.80-83
    • /
    • 2019
  • The Mn4+-activated Li2ZnSn2O6 (LZSO:Mn4+) red phosphors were synthesized by the solid-state reaction at temperatures of 1100-1400 ℃ in air. The synthesized LZSO:Mn4+ phosphors were confirmed to have a single hexagonal LZSO phase without the presence of any secondary phase formed by the Mn4+ addition. With near UV and blue excitation, the LZSO:Mn4+ phosphors exhibited a double band deep-red emission peaked at ~658 nm and ~673 nm due to the 2E → 4A2 transition of Mn4+ ion. PL emission intensity showed a strong dependence on the Mn4+ doping concentration and the 0.3 mol% Mn4+-doped LZSO phosphor produced the strongest PL emission intensity. Photoluminescence emission intensity was also found to be dependent on the calcination temperature and the optimal calcination temperature for the LZSO:Mn4+ phosphors was determined to be 1200 ℃. Dynamic light scattering (DLS) and field-effect scanning electron microscopy (FE-SEM) analysis revealed that the 0.3 mol% Mn4+-doped LZSO phosphor particles have an irregularly round shape and an average particle size of ~1.46 ㎛.

Improved Power Conversion Efficiency of Dye-Sensitized Solar Cells Assisted with phosphor materials Scattering layer

  • Lee, Yong-Min;Choi, Hyun Ji;Kim, Dong In;Lee, Yul Hee;Yu, Jung-Hoon;Kim, Jee Yun;Seo, Hyeon Jin;Hwang, Ki-Hwan;Nam, Sang Hun;Boo, Jin-Hyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.408.2-409
    • /
    • 2016
  • Theoretically, the dye-sensitized solar cells (DSSCs) are high efficiency solar cells. However DSSCs have low power conversion efficiency (PCE) than silicon based solar cells. In this study, we use the phosphor materials, such as $Y_2O_3:Eu$ (Red), $Zn_2SiO_4:Mn$ (Green), $BaMgAl_{14}O_{23}:Eu$ (Blue), to enhance the PCE of DSSCs. Three phosphors were prepared and used as an effective scattering layer on the transparent $TiO_2$ with doctor blade method. We confirmed that the three scattering layers improve the PCE and Jsc due to the light harvesting enhancement via increased the scattering and absorbance in visible range. Under the sun illumination AM 1.5 conditions, the PCE of the mesoporous $TiO_2$ based DSSCs is 5.18 %. The PCE of the DSSCs with Y2O3:Eu, $Zn_2SiO_4:Mn$ and $BaMgAl_{14}O_{23}:Eu$ as scattering layer were enhanced to 5.66 %, 5.72% and 5.82%, respectably. In order to compare the optical properties change, DSSCs were measured by EQE, reflectance and PCE. At the same time, FE-SEM and XRD were used to confirm the structural changes of each layer.

  • PDF

Temperature Effect on the Optical Properties of YAG and Silicate Phosphor-based White Light Emitting Diodes (온도 변화에 따른 YAG 및 Silicate형광체 기반 백색 LED의 광특성 변화에 대한 연구)

  • Choi, Hyun-Woo;Ko, Jae-Hyeon
    • Korean Journal of Optics and Photonics
    • /
    • v.24 no.3
    • /
    • pp.135-142
    • /
    • 2013
  • Two white light emitting diodes(LEDs) were fabricated by using two kinds of yellow phosphor, YAG:Ce and $(Sr,Ba)_2SiO4:Eu$, and their spectroscopic properties were analyzed as a function of temperature from room temperature to $80^{\circ}C$. The asymmetric double sigmoidal function was applied to both blue and yellow peaks of the emitting spectrum to obtain the center wavelength, the amplitude, the half width, and the skewness parameters. According to this analysis, the center wavelength of the blue peak shifted to longer wavelength while that of the yellow peak shifted to shorter wavelength. In addition, some of the skewness parameters were found to increase upon heating, which indicates that spectrum asymmetry becomes enhanced at higher temperatures. The changes in the color coordinates and the luminous efficacy were larger for the case of silicate-based white LED. These results suggest that the silicate-based white LED is inferior to the YAG-based white LED from the viewpoint of color stability, efficacy and color rendering index.

[ $LaNbO_4$ ] : X (X = Bi, Eu)형광체의 발광 및 저 전압 음극선 발광 특성 (Photoluminescent and low voltage cathodoluminescent properties of $LaNbO_4$ : X (X = Bi, Eu) phosphors)

  • On Ji-Won;Kim Youhyuk
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.16 no.1
    • /
    • pp.32-37
    • /
    • 2006
  • Rare-earth niobates, ag (Ln = Y, La, Gd) are well-known self-activated phosphors due to charge transfer in $NbO^{3-}_4$ showing a broad and strong emission band in the spectral region around 410 nm. In order to find new blue and red phosphors for FED, $LaNbO_4$ : X (X = Bi, Eu) phosphors are prepared through solid-state reactions at high temperature. The optimum reaction condition for these phosphors to give maximum emission intensity is obtained when it is first fired at $1250^{\circ}C$ for 2 h followed by second firing at $1400^{\circ}C$ for 1 h. Under irradiation at 254 nm, $1mol\%\;Bi^{3+}$ doped $LaNbO_4$ phosphor shows strong blue emission band with a range of $420\~450nm$. Also $10mol\%\;Eu^{3+}$ doped $LaNbO_4$ phosphor shows the maximum emission intensity at about 610 nm. Emission peaks at $415\~460nm$, $530\~560nm$and $570\~620nm$are observed in phosphors below $10mol\%\;Eu^{3+}$ doped $LaNbO_4$. Similar results are obtained in cathodoluminescent property of these phosphors.