• Title/Summary/Keyword: blue chip department

Search Result 35, Processing Time 0.023 seconds

Earnings Management and Division System in the KOSDAQ Market (코스닥소속부제와 이익조정)

  • Kwak, Young-Min
    • Management & Information Systems Review
    • /
    • v.34 no.3
    • /
    • pp.125-140
    • /
    • 2015
  • KOSDAQ market reorganized their division system from two types to four types of division departments such as blue chip, venture, medium, and technology development departments in 2011. However, under the current new division system, financially unhealthy firms attempting to take advantage of the classifying opportunity of blue chip department are likely to engage in pernicious earnings management. The objective of this study is to investigate the earnings management behavior surrounding the time of KOSDAQ firms entering the blue chip department via new division system. More specifically, we test whether the firms classified blue chip department tend to engage in upward earnings management using accruals and real activities before and after they achieve blue chip status. In this study, we analyzed 111 firms classified blue chip department in 2011 according to new division system in KOSDAQ market. Major test results indicate that firms entering the blue chip department according to current KOSDAQ division system in general, tend to inflate reported earnings by means both of accruals and real activities right before the entering year. This result suggests that the firms classified blue chip department engage in opportunistic earnings management with a view to uplifting their market values. Our study is expected to provide clues useful for searching policy directions which intend to ameliorate adverse side effects of the current KOSDAQ division system. In sum, the regulatory authorities and enforcement bodies need to exercise caution in deliberating more stringent review procedures so that financially healthy and promising candidates are properly segregated from their poor and risky counterparts, thus enhancing the beneficial effects, while mitigating adverse side effects of the system.

  • PDF

Analysis on the Luminous Efficiency of Phosphor-Conversion White Light-Emitting Diode

  • Ryu, Han-Youl
    • Journal of the Optical Society of Korea
    • /
    • v.17 no.1
    • /
    • pp.22-26
    • /
    • 2013
  • The author analyzes the luminous efficiency of the phosphor-conversion white light-emitting diode (LED) that consists of a blue LED chip and a yellow phosphor. A theoretical model is derived to find the relation between luminous efficiency (LE) of a white LED, wall-plug efficiency (WPE) of a blue LED chip, and the phosphor absorption ratio of blue light. The presented model enables to obtain the theoretical limit of LE and the lower bound of WPE. When the efficiency model is applied to the measured results of a phosphor-conversion white LED, the limit theoretical value of LE is obtained to be 261 lm/W. In addition, for LE of 88 lm/W at 350 mA, the lower bound of WPE in the blue LED chip is found to be ~34%. The phosphor absorption ratio of blue light was found to have an important role in optimizing the luminous efficiency and colorimetric properties of phosphor-conversion white LEDs.

Analysis of the Temperature Dependence of Phosphor Conversion Efficiency in White Light-Emitting Diodes

  • Ryu, Guen-Hwan;Ryu, Han-Youl
    • Journal of the Optical Society of Korea
    • /
    • v.19 no.3
    • /
    • pp.311-316
    • /
    • 2015
  • We investigate the temperature dependence of the phosphor conversion efficiency (PCE) of the phosphor material used in a white light-emitting diode (LED) consisting of a blue LED chip and yellow phosphor. The temperature dependence of the wall-plug efficiency (WPE) of the blue LED chip and the PCE of phosphor are separately determined by analyzing the measured spectrum of the white LED sample. As the ambient temperature increases from 20 to $80^{\circ}C$, WPE and PCE decrease by about 4.5% and 6%, respectively, which means that the contribution of the phosphor to the thermal characteristics of white LEDs can be more important than that of the blue LED chip. When PCE is decomposed into the Stokes-shift efficiency and the phosphor quantum efficiency (QE), it is found that the Stokes-shift efficiency is only weakly dependent on temperature, while the QE decreases rapidly with temperature. From 20 to $80^{\circ}C$ the phosphor QE decreases by about 7% while the Stokes-shift efficiency changes by less than 1%.

Effect of Chip Wavelength and Particle Size on the Performance of Two Phosphor Coated W-LEDs

  • Yadav, Pooja;Joshi, Charusheela;Moharil, S.V.
    • Transactions on Electrical and Electronic Materials
    • /
    • v.15 no.2
    • /
    • pp.66-68
    • /
    • 2014
  • Most commercial white LED lamps use blue chip coated with yellow emitting phosphor. The use of blue excitable red and green phosphors is expected to improve the CRI. Several phosphors, such as $SrGa_2S_4:Eu^{2+}$ and $(Sr,Ba)SiO_4:Eu^{2+}$, have been suggested in the past as green components. However, there are issues of the sensitivity and stability of such phosphors. Here, we describe gallium substituted $YAG:Ce^{3+}$ phosphor, as a green emitter. YAG structures are already accepted by the industry, for their stability and efficiency. LEDs with improved CRI could be fabricated by choosing $Y_3Al_4GaO_{12}:Ce^{3+}$ (green and yellow), and $SrS:Eu^{2+}$ (red) phosphors, along with blue chip. Also, the effect of a slight change in chip wavelength is studied, for two phosphor-coated w-LEDs. The reduction in particle size of the coated phosphors also gives improved w-LED characteristics.

Chip Size-Dependent Light Extraction Efficiency for Blue Micro-LEDs (청색 마이크로 LED의 광 추출 효율에 미치는 칩 크기 의존성 연구)

  • Park, Hyun Jung;Cha, Yu-Jung;Kwak, Joon Seop
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.1
    • /
    • pp.47-52
    • /
    • 2019
  • Micro-LEDs show lower efficiencies compared to general LEDs having large areas. Simulations were carried out using ray-tracing software to investigate the change in light extraction efficiency and light distribution according to chip-size of blue flip-chip micro-LEDs (FC ${\mu}-LEDs$). After fixing the height of the square FC ${\mu}-LED$ chip at $158{\mu}m$, the length of one side was varied, with dimensions of 2, 5, 10, 30, 50, 100, 300, and $500{\mu}m$. The highest light-extraction efficiency was obtained at $10{\mu}m$, beyond which the efficiency decreased as the chip-size increased. The chip size-dependence of the FC ${\mu}-LEDs$ both without the patterned sapphire substrate, as well as vertical FC ${\mu}-LEDs$, were analyzed.

The Subjective Evaluation on White Light Property and Color Appearance of Single Chip LED and RGB Multi Chip LED (단일칩 LED와 RGB 멀티칩 LED의 백색광 특성 및 색 보임에 대한 주관평가 연구)

  • Sim, Yun-Ju;Kim, In-Tae;Choi, An-Seop
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.1
    • /
    • pp.1-8
    • /
    • 2015
  • To produce the white light, there are a single chip method using the blue light and phosphor coating, a multi chip method by mixing R, G, B light.. Multi chip method is proper for the smart lighting system by controling color and color temperature. And color rendering of single chip LED is good by even spectral distribution. To apply application technic like smart light system, this paper analyzed the properties of single chip LED and RGB multi chip LED, and implemented the 2 part subject evaluation for single chip LED and RGB multi chip LED. The first part is comparison of properties for single chip LED and RGB multi chip and second part is color appearance evaluation of 8 colors in each lighting environment.

Diagnostic Paper Chip for Reliable Quantitative Detection of Albumin using Retention Factor (체류 인자를 이용한, 알부민의 정량 분석용 종이 칩)

  • Jeong, Seong-Geun;Lee, Sang-Ho;Lee, Chang-Soo
    • KSBB Journal
    • /
    • v.28 no.4
    • /
    • pp.254-259
    • /
    • 2013
  • Herein we present a diagnostic paper chip that can quantitatively detect albumin without external electronic reader and dispensing apparatus. We fabricated a diagnostic paper chip device by printing wax barrier on the paper and wicking it with citrate buffer and tetrabromophenol blue to detect albumin in sample solution. The paper chip is so simple that we dropped a sample solution at sample pad and measure the ratio of two travel distances of the sample solvent and albumin under the name of retention factor. Our result confirmed that the retention factor was constant in the samples with same concentration of albumin and useful determinant for the measurement of albumin concentration. The paper chip is affordable and equipment-free, and close to ideal point-of-care test in accordance with the assured criteria, outlined by the World Health Organization. We assume that this diagnostic paper chip will expand the concept of colorimetric determination and provide a inexpensive diagnostic method to aging society and developing country.

Preparation, Characterization and Photoluminescence Properties of Ca1-xSrxS:Eu Red-emitting Phosphors for a White LED

  • Sung, Hye-Jin;Cho, Young-Sik;Huh, Young-Duk;Do, Young-Rag
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.8
    • /
    • pp.1280-1284
    • /
    • 2007
  • A series of Ca1-xSrxS:Eu (x = 0.0, 0.2, 0.4, 0.6, 0.8, 1.0) phosphors were synthesized by solid-state reactions. The Ca1-xSrxS:Eu phosphors have a strong absorption at 455 nm, which corresponds to the emission wavelength of a blue LED. The emission peak of Ca1-xSrxS:Eu is blue shifted from 655 to 618 nm with increasing Sr content. The characteristics of Ca1-xSrxS:Eu phosphors make them suitable for use as wavelengthtunable red-emitting phosphors for three-band white LEDs pumped by a blue LED. In support of this, we fabricated a three-band white LED by coating SrGa2S4:Eu and Ca0.6Sr0.4S:Eu phosphors onto a blue LED chip, and characterized its optical properties.

Development of a Microarrayer for DNA Chips

  • Kim Sang Bong;Jeong Nam Soo;Kim Suk Yeol;Lee Myung Suk
    • Fisheries and Aquatic Sciences
    • /
    • v.5 no.1
    • /
    • pp.36-42
    • /
    • 2002
  • Microarrayer is used to make DNA chip and microarray that contain hundreds to thousands of immobilized DNA probes on surface of a microscope slide. This paper shows the develop-ment results for a printing type of microarrayer. It realizes a typical, low-cost and efficient microarrayer for generating low density micro array. The microarrayer is developed by using a prependicular type robot with three axes. It is composed of a computer-controlled three-axes robot and a pen tip assembly. The key component of the arrayer is the print-head containing the tips to immobilize cDNA, genomic DNA or similar biological material on glass surface. The robot is designed to automatically collect probes from two 96-well plates with up to 12 pens at the same time. To prove the performance of the developed microarrayer, we use the general water types of inks such as black, blue and red. The inks are distributed at proper positions of 96 well plates and the three color inks are immobilized on the slide glass under the operation procedure. As the result of the test, we can see that it has sufficient performance for the production of low integrated DNA chip consisted of 96 spots within $1cm^2$ area.