• Title/Summary/Keyword: blood-brain barrier

Search Result 183, Processing Time 0.033 seconds

Anti-Alzheimer′s drug, taurine transport through the blood-brain barrier in mice and pharmacokinetics

  • Kim, You-Jung;Kang, Young-Sook
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1998.11a
    • /
    • pp.193-194
    • /
    • 1998
  • Recently, evaluation of brain transport of taurine which is possible to effect on Alzheimer's disease has investigated in rats. Also, internal carotid artery perfusion (ICAP) method is very useful for measuring of blood-brain barrier (BBB) permeability in rats. But ICAP has difficulties to evaluate of BBB permeability in mice especially. In the present study examines neuropharmaceutials permeability through the BBB in mice by common carotid artery perfusion (CCAP) method that modify ICAP method and require simple surgery. The external carotid artery (ECA) is cannulated with coagulating pterygopalatine artery (PPA) on ICAP method, while CCA is cannulated without coagulating PPA on CCAP method. The CCAP method require 4-5 fold higher infusion rate than ICAP method because an additional factor of 2 must be incorporated to adjust for fluid loss to the extracerebral circulation.

  • PDF

A Blood-brain Barrier Permeable Derivative of 5-Fluorouracil: Preparation, Intracellular Localization, and Mouse Tissue Distribution

  • Im, Jung-Kyun;Biswas, Goutam;Kim, Wan-Il;Kim, Kyong-Tai;Chung, Sung-Kee
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.3
    • /
    • pp.873-879
    • /
    • 2011
  • 5-Fluorouracil (5-FU), an anticancer agent was covalently attached to the recently developed sorbitol-based G8 transporter, and the conjugate (7) with FITC was found to have an affinity toward mitochondria and to readily cross BBB to gain an entry into mouse brain. Measured by $IC_{50}$, the conjugate (9) without the fluorophore showed enhanced cytotoxic activity toward two types of multidrug-resistant cell lines. These results strongly suggest that the sorbitol-based G8 transporter can be utilized as a good CNS delivery vector.

Neurotoxicity of Paclitaxel and Rapamycin in a Rat Model with Transient Blood-Brain Barrier Opening

  • Cho, Won-Sang;Choi, Jung Hoon;Kwon, O-Ki
    • Journal of Korean Neurosurgical Society
    • /
    • v.65 no.2
    • /
    • pp.180-185
    • /
    • 2022
  • Objective : Drug-eluting stents and balloons are occasionally used to reduce restenosis in medically intractable intracranial atherosclerotic stenosis. The authors aimed to determine whether such drugs can cause neurotoxicity due to local effects in a rat model. Methods : Intra-arterial catheters were placed in the right common carotid artery of rats. Mannitol was injected to transiently open the brain-blood barrier (BBB), followed by high-dose drug (paclitaxel and rapamycin) injection. The optimal time interval of transient BBB opening for maximal drug penetration was determined to be 10 minutes. Paclitaxel and rapamycin were intra-arterially administered in various doses. All the rats were neurologically evaluated, and their brain tissues were histologically examined. Results : Neither neurological deficits nor histological abnormalities were observed in all the rats. Conclusion : Paclitaxel and rapamycin did not cause neurotoxicity in a rat model with transient BBB opening.

Regulation of Choline Transport by Oxidative Stress at the Blood-Brain Barrier In Vitro Model

  • Kang, Young-Sook;Lee, Hyun-Ae;Lee, Na-Young
    • Biomolecules & Therapeutics
    • /
    • v.16 no.1
    • /
    • pp.14-20
    • /
    • 2008
  • In the present study, we examined how the transport of choline is regulated at the blood-brain barrier (BBB) under the central nervous system (CNS) cellular damages by oxidative stress using a conditionally immortalized rat brain capillary endothelial cells (TR-BBB), in vitro the BBB model. It was also tested whether the choline uptake is influenced by membrane potential, extracellular pH, protonophore (FCCP) and amiloride in TR-BBB cells. In result, $[^3H]choline$ uptake was inhibited by FCCP and dependent on extracellular pH. The treatment of TR-BBB cells with 20 ng/mL tumor necrosis $factor-{\alpha}$ $(TNF-{\alpha})$, 10 ng/mL lipopolysaccharide (LPS), 100 ${\mu}M$ diethyl maleate (DEM) and 100 ${\mu}M$ glutamate resulted in 3.0-fold, 2.6-fold, 1.8-fold and 2.0-fold increases of $[^3H]choline$ uptake at the respective peak time, respectively. In contrast, hydrogen peroxide and raffinose did not show any significant effects on choline uptake. In addition, choline efflux was significantly inhibited by $TNF-{\alpha}$, LPS and DEM producing cell damage states. In conclusion, the influx and efflux transport system for choline existed in TR-BBB cell line and this process was affected by several oxidative stress inducing agents.

Blood-neural Barrier: Intercellular Communication at Glio-Vascular Interface

  • Kim, Jeong-Hun;Kim, Jin-Hyoung;Park, Jeong-Ae;Lee, Sae-Won;Kim, Woo-Jean;Yu, Young-Suk;Kim, Kyu-Won
    • BMB Reports
    • /
    • v.39 no.4
    • /
    • pp.339-345
    • /
    • 2006
  • The blood-neural barrier (BNB), including blood-brain barrier (BBB) and blood-retinal barrier (BRB), is an endothelial barrier constructed by an extensive network of endothelial cells, astrocytes and neurons to form functional 'neurovascular units', which has an important role in maintaining a precisely regulated microenvironment for reliable neuronal activity. Although failure of the BNB may be a precipitating event or a consequence, the breakdown of BNB is closely related with the development and progression of CNS diseases. Therefore, BNB is most essential in the regulation of microenvironment of the CNS. The BNB is a selective diffusion barrier characterized by tight junctions between endothelial cells, lack of fenestrations, and specific BNB transporters. The BNB have been shown to be astrocyte dependent, for it is formed by the CNS capillary endothelial cells, surrounded by astrocytic end-foot processes. Given the anatomical associations with endothelial cells, it could be supposed that astrocytes play a role in the development, maintenance, and breakdown of the BNB. Therefore, astrocytes-endothelial cells interaction influences the BNB in both physiological and pathological conditions. If we better understand mutual interactions between astrocytes and endothelial cells, in the near future, we could provide a critical solution to the BNB problems and create new opportunities for future success of treating CNS diseases. Here, we focused astrocyte-endothelial cell interaction in the formation and function of the BNB.

Protective Effects of Traditional Korean Medicine Preparations, Herbs, and Active Compounds on the Blood-brain Barrier in Ischemic Stroke Models (허혈성 뇌졸중 모델에서 혈액-뇌 장벽에 보호효과를 나타내는 한약처방, 한약재 및 활성화합물)

  • Shin, Su Bin;Jang, Seok Ju;Lee, Na Gyeong;Choi, Byung Tae;Shin, Hwa Kyoung
    • Journal of Life Science
    • /
    • v.32 no.7
    • /
    • pp.550-566
    • /
    • 2022
  • Stroke is among the leading causes of death and long-term physical and cognitive disabilities worldwide, affecting an estimated 15 million people annually. The pathophysiological process of stroke is complicated by multiple and coordinated events. The breakdown of the blood-brain barrier (BBB) in people with stroke can significantly contribute to the development of ischemic brain injury. Therefore, BBB disruption is recognized as a hallmark of stroke; thus, it is important to develop novel therapeutic strategies that can protect against BBB dysfunction in ischemic stroke. Traditional medicines are composed of natural products, which represent a promising source of new ingredients for the development of conventional medicines. Indeed, several studies have shown the effectiveness of Korean medicine on stroke, highlighting the value of Korean medicinal treatment for ischemic stroke. This review summarizes the current information and underlying mechanisms regarding the ameliorating effects of the formula, decoction, herbs, and active components of traditional Korean medicine on cerebral ischemia-induced BBB disruption. These traditional medicines were shown to have protective effects on the BBB in many cellular and animal ischemia models of stroke, and experiments in various animal species, such as mice and rats. In addition, they showed brain-protective effects by protecting the BBB through the regulation of tight junction proteins and matrix metalloproteinase-9, reducing edema, neuroinflammation, and neuronal cell death. We hope that this review will help promote further investigation into the neuroprotective effects of traditional Korean medicines and stimulate the performance of clinical trials on Korean herbal medicine-derived drugs in patients with stroke.

Selection of Potential Virulence Factors Contributing to Streptococcus suis Serotype 2 Penetration into the Blood-Brain Barrier in an In Vitro Co-Culture Model

  • Liu, Hongtao;Zhu, Seng;Sun, Yingying;Li, Na;Gu, Jingmin;Sun, Changjiang;Feng, Xin;Han, Wenyu;Jiang, Jianxia;Lei, Liancheng
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.1
    • /
    • pp.161-170
    • /
    • 2017
  • Meningitis caused by Streptococcus suis serotype 2 (S. suis 2) is a great threat to the pig industry and human health. Virulence factors associated with the pathogenesis of meningitis have yet to be clearly defined, even though many potential S. suis 2 virulence factors have been identified. This greatly hinders the progress of S. suis 2 meningitis pathogenesis research. In this study, a co-culture blood-brain barrier (BBB) model was established using primary porcine brain microvascular endothelial cells and astrocytes, and the whole genome library of S. suis 2 was constructed using phage display technology. Finally, a total of 14 potential virulence factors contributing to S. suis 2 adherence to and invasion of the BBB were selected by analyzing the interactions between the phage library and the co-culture model. Twelve of these factors have not been previously reported in meningitis-related research. The data provide valuable insight into the pathogenesis of S. suis 2 meningitis and potential targets for the development of drug therapies.

Multitarget effects of Korean Red Ginseng in animal model of Parkinson's disease: antiapoptosis, antioxidant, antiinflammation, and maintenance of blood-brain barrier integrity

  • Choi, Jong Hee;Jang, Minhee;Nah, Seung-Yeol;Oh, Seikwan;Cho, Ik-Hyun
    • Journal of Ginseng Research
    • /
    • v.42 no.3
    • /
    • pp.379-388
    • /
    • 2018
  • Background: Ginsenosides are the main ingredients of Korean Red Ginseng. They have extensively been studied for their beneficial value in neurodegenerative diseases such as Parkinson's disease (PD). However, the multitarget effects of Korean Red Ginseng extract (KRGE) with various components are unclear. Methods: We investigated the multitarget activities of KRGE on neurological dysfunction and neurotoxicity in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced mouse model of PD. KRGE (37.5 mg/ kg/day, 75 mg/kg/day, or 150 mg/kg/day, per os (p.o.)) was given daily before or after MPTP intoxication. Results: Pretreatment with 150 mg/kg/day KRGE produced the greatest positive effect on motor dysfunction as assessed using rotarod, pole, and nesting tests, and on the survival rate. KRGE displayed a wide therapeutic time window. These effects were related to reductions in the loss of tyrosine hydroxylase-immunoreactive dopaminergic neurons, apoptosis, microglial activation, and activation of inflammatory factors in the substantia nigra pars compacta and/or striatum after MPTP intoxication. In addition, pretreatment with KRGE activated the nuclear factor erythroid 2-related factor 2 pathways and inhibited phosphorylation of the mitogen-activated protein kinases and nuclear factor-kappa B signaling pathways, as well as blocked the alteration of blood-brain barrier integrity. Conclusion: These results suggest that KRGE may effectively reduce MPTP-induced neurotoxicity with a wide therapeutic time window through multitarget effects including antiapoptosis, antiinflammation, antioxidant, and maintenance of blood-brain barrier integrity. KRGE has potential as a multitarget drug or functional food for safe preventive and therapeutic strategies for PD.

The Simple in Vivo Evaluation Method for Blood-Brain Barrier Permeability of Drugs in Mice (생쥐에 있어서 약물의 혈액-뇌 관문 투과성 평가를 위한 간편한 in vivo 방법)

  • Kang, Young-Sook;Kim, You-Jung
    • Journal of Pharmaceutical Investigation
    • /
    • v.30 no.2
    • /
    • pp.99-105
    • /
    • 2000
  • This study compared the permeability of $[^3H]taurine,\;[^3H]phenylalanine,\;and\;[^3H]oxytocin$ through the blood-brain barrier (BBB) in mice and rats with common carotid artery perfusion (CCAP) method that modified internal carotid artery perfusion (ICAP) method. External carotid artery (ECA) was cannulated with coagulating pterygopalatine artery (PPA) in ICAP method, while CCA was cannulated without coagulating PPA in CCAP method. Also, for evaluation of BBB permeability of drugs in mice and rats, we used intravenous injection technique. The results of CCAP method in mice at a perfusion flow-rate of 2 ml/min, the brian volume of distribution $(V_D)$ of $[^{14}C]sucrose,\;[^3H]taurine,\;[^3H]phenylalanine,\;and\;[^3H]oxytocin$ were similar to the result of ICAP method in rats at perfusion flow rate of 4 ml/min. The area under the plasma concentration-time curve and brain uptake of $[^3H]taurine$ by intravenous injection technique, were $65.5{\pm}9.7%ID^*min/ml\;and\;0.515{\pm}0.093%ID/g$, respectively, in mice, and the corresponding values were $8.00{\pm}0.03%ID^*min/ml\;and\;0.052{\pm}0.003%ID/g$ in rats. But the BBB permeability surface-area product of $[^3H]taurine$ was similar between mice and rats. In conclusion, the CCAP method in mice was simple, fast and comparable to ICAP method in rats for drug permeability through the BBB.

  • PDF