• Title/Summary/Keyword: blood oxygen saturation($SPO_2$)

Search Result 3, Processing Time 0.02 seconds

Differences of Blood Oxygen Saturation between Male and Female due to Change of Supply Rate of Highly Concentrated Oxygen (고농도 산소 공급량 변화에 따른 남/녀 혈중 산소 포화도의 차이)

  • Yi, Jeong-Han;Choi, Mi-Hyun;Kim, Ji-Hye;Lee, Su-Jeong;Yang, Jae-Woong;Chung, Soon-Cheol;Lim, Dae-Woon;Lee, Dong-Hyung;Min, Byung-Chan
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.32 no.4
    • /
    • pp.203-207
    • /
    • 2009
  • The purpose of this study was to examine differences between male and female in blood oxygen saturation due to 93% oxygen administration of the three levels (1L/min, 3L/min, 5L/min). Ten healthy male ($25.0{\pm}1.8$ years) and ten female ($23.7{\pm}1.9$ years) college students were selected as the subjects for this study. The experiment consisted of three runs, i.e., the three levels of 93% oxygen administration, respectively. The each run consisted of three phases, i.e., Rest 1 (5 min), Hyperoxia (10 min), and Rest 2 (5 min). Blood oxygen saturation were measured throughout the three phases. By increasing the supply rate of highly concentrated oxygen, rising rate of blood oxygen saturation was increased. Blood oxygen saturation of female was higher than male regardless of supply rate of highly concentrated oxygen and phases.

Differences of Blood Oxygen Saturation between 20s and 60s due to Amount of Highly Concentrated Oxygen Administration (고농도 산소 공급량에 따른 20대와 60대의 혈중 산소 포화도의 차이)

  • Choi, Mi-Hyun;Kim, Ji-Hye;Lee, Su-Jeong;Yang, Jae-Woong;Yi, Jeong-Han;Jun, Jae-Hoon;Kim, Hyun-Jun;Lee, Tae-Soo;Chung, Soon-Cheol
    • Science of Emotion and Sensibility
    • /
    • v.13 no.1
    • /
    • pp.41-46
    • /
    • 2010
  • The purpose of this study was to examine differences between 20s and 60s in blood oxygen saturation due to 93% oxygen administration of the three levels(1L/min, 3L/min, 5L/min). Ten 20s male($25.0{\pm}1.8$ years), ten 20s female($23.7{\pm}1.9$ years), ten 60s male($68.0{\pm}2.6$ years), and ten 60s female($65.5{\pm}3.1$ years) were selected as the subjects for this study. The oxygen supply equipment(OXUS Co.) provided oxygen by supply rate(i.e., 1L/min, 3L/min, and 5L/min) at a constant rate of 93% oxygen. The experiment consisted of three phases, i.e., Prehyperoxia(5min), Hyperoxia(10min), and Post-hyperoxia(5min). Blood oxygen saturation were measured throughoutthe three phases. By increasing the amount of highly concentrated oxygen administration, blood oxygen saturation was increased. Blood oxygen saturation of 20s was higher than 60s. Blood oxygen saturation was greater during Hyperoxia than during Pre- and Post-hyperoxia. However, rising rate of blood oxygen saturation of 60s by oxygen administration was higher than 20s.

  • PDF

Comparison of the anesthetic effects of 2,2,2-tribromoethanol on ICR mice derived from three different sources

  • Lee, Mi Ree;Suh, Hye Rin;Kim, Myeong Whan;Cho, Joon Young;Song, Hyun Keun;Jung, Young Suk;Hwang, Dae Youn;Kim, Kil Soo
    • Laboraroty Animal Research
    • /
    • v.34 no.4
    • /
    • pp.270-278
    • /
    • 2018
  • This study was conducted to compare the anesthetic effects of 2,2,2-tribromoethanol (TBE, $Avertin^{(R)}$) in ICR mice obtained from three different sources. TBE (2.5%) was intraperitoneally injected at three doses: high-dose group (500 mg/kg), intermediate-dose group (250 mg/kg), and low-dose group (125 mg/kg). Anesthesia time, recovery time, end-tidal peak $CO_2$ ($ETCO_2$), mean arterial blood pressure, heart rate, oxygen saturation ($SpO_2$), body temperature, pH, $PCO_2$, and $PO_2$ of the arterial blood were measured. Stable anesthesia was induced by all doses of TBE and the anesthesia time was maintained exhibited dose dependency. No significant differences in anesthetic duration were found among the three different strains. However, the anesthesia time was longer in female than in male mice, and the duration of anesthesia was significantly longer in female than in male mice in the high-dose group. The recovery time was significantly longer for female than male mice in the intermediate- and high-dose groups. In the ICR strains tested, there were no significant differences in the mean arterial blood pressure, $SPO_2$, arterial blood $PCO_2$, and $PO_2$, which decreased after TBE anesthesia, or in heart rate and $ETCO_2$, which increased after TBE anesthesia. In addition, body temperature, blood biochemical markers, and histopathological changes of the liver, kidney, and lung were not significantly changed by TBE anesthesia. These results suggested that ICR mice from different sources exhibited similar overall responses to a single exposure to TBE anesthesia. In conclusion, TBE is a useful drug that can induce similar anesthetic effects in three different strains of ICR mice.