• Title/Summary/Keyword: blood

Search Result 24,607, Processing Time 0.038 seconds

Design and Implementation of a Blood-Glucose Meter to Reduce Hematocrit Interference (적혈구 용적률 간섭 보정을 위한 혈당 측정 기기의 설계 및 구현)

  • Cho, Hyuntae
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.15 no.4
    • /
    • pp.167-175
    • /
    • 2020
  • A blood-glucose meter is one of the in vitro diagnostic devices to measure and control the glucose concentration of diabetics. In order to measure the glucose level in the blood, the common method is to measure the amount of electrons, that is, the output current generated by glucose oxidation after a blood sample is inserted into the test strip containing an enzyme. The hematocrit is an obstacle in measuring accurate blood glucose concentration. This paper deals with the design and implementation of a blood-glucose meter to correct the hematocrit interference. We propose a sequential method which measures impedance using the alternating current and then measures glucose in the blood using the direct current. In addition, this paper introduces how to use commercial glucose strips based on the proposed system. Finally, we conducted the performance evaluation of the proposed system by comparing the measured current and impedance with those of the references. As a result, the standard deviation of the current measurement is approximately 0.6nA and the impedance measurement error for measuring the hematocrit is approximately within 1%. The proposed system will improve the accuracy of the conventional blood-glucose meter by reducing the hematocrit interference.

A Heuristic for Drone-Utilized Blood Inventory and Delivery Planning (드론 활용 혈액 재고/배송계획 휴리스틱)

  • Jang, Jin-Myeong;Kim, Hwa-Joong;Son, Dong-Hoon
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.44 no.3
    • /
    • pp.106-116
    • /
    • 2021
  • This paper considers a joint problem for blood inventory planning at hospitals and blood delivery planning from blood centers to hospitals, in order to alleviate the blood service imbalance between big and small hospitals being occurred in practice. The joint problem is to determine delivery timing, delivery quantity, delivery means such as medical drones and legacy blood vehicles, and inventory level to minimize inventory and delivery costs while satisfying hospitals' blood demand over a planning horizon. This problem is formulated as a mixed integer programming model by considering practical constraints such as blood lifespan and drone specification. To solve the problem, this paper employs a Lagrangian relaxation technique and suggests a time efficient Lagrangian heuristic algorithm. The performance of the suggested heuristic is evaluated by conducting computational experiments on randomly-generated problem instances, which are generated by mimicking the real data of Korean Red Cross in Seoul and other reliable sources. The results of computational experiments show that the suggested heuristic obtains near-optimal solutions in a shorter amount of time. In addition, we discuss the effect of changes in the length of blood lifespan, the number of planning periods, the number of hospitals, and drone specifications on the performance of the suggested Lagrangian heuristic.

Systolic blood pressure measurement algorithm with mmWave radar sensor

  • Shi, JingYao;Lee, KangYoon
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.4
    • /
    • pp.1209-1223
    • /
    • 2022
  • Blood pressure is one of the key physiological parameters for determining human health, and can prove whether human cardiovascular function is healthy or not. In general, what we call blood pressure refers to arterial blood pressure. Blood pressure fluctuates greatly and, due to the influence of various factors, even varies with each heartbeat. Therefore, achievement of continuous blood pressure measurement is particularly important for more accurate diagnosis. It is difficult to achieve long-term continuous blood pressure monitoring with traditional measurement methods due to the continuous wear of measuring instruments. On the other hand, radar technology is not easily affected by environmental factors and is capable of strong penetration. In this study, by using machine learning, tried to develop a linear blood pressure prediction model using data from a public database. The radar sensor evaluates the measured object, obtains the pulse waveform data, calculates the pulse transmission time, and obtains the blood pressure data through linear model regression analysis. Confirm its availability to facilitate follow-up research, such as integrating other sensors, collecting temperature, heartbeat, respiratory pulse and other data, and seeking medical treatment in time in case of abnormalities.

Review on Hyolmaek(血脈) through Hwangjenaegyeong Youngchu (${\ll}$ 제내경(黃帝內經).영추(靈樞)${\gg}$를 통한 혈맥소고(血脈小考))

  • Kang, Mi-Suk
    • Journal of Acupuncture Research
    • /
    • v.27 no.6
    • /
    • pp.111-114
    • /
    • 2010
  • Objects : This study focused on the concept of Hyolmaek in Hwangjenaegyeong Youngchu. Methods : We researched the words "Hyolmaek" through Hwangjenaegyeong Youngchu. According to meanings of Hyolmaek in sentence, we classified Hyolmaek. Results : In Hwangjenaegyeong Youngchu, the meanings of Hyolmaek(血脈)are follows. 1. There were many meanings of Hyolmaek In Hwangjenaegyeong Youngchu. 2. Hyolmaek means blood vessels, Lakmaek, blood circulation, extravasated blood, and etc. and it represents blood vessel systems.

Spectral Element Modeling for the Blood Flow through Artery (동맥 유동해석을 위한 스펙트럴 요소의 개발)

  • Jang, In-Joon;Seo, Bo-Sung;Lee, U-Sik
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.383-386
    • /
    • 2007
  • As the blood flow characteristics have been recognized to be closely related to various cardiovascular diseases, it is very important to predict them accurate enough in an efficient way. Thus, this paper proposes a one-dimensional spectral finite element model for the human blood vessels. The spectral finite element model is formulated in the frequency-domain by using the exact frequency dependent shape functions and applied to an ascending aorta.

  • PDF

Analysis of conventional drag and lift models for multiphase CFD modeling of blood flow

  • Yilmaz, Fuat;Gundogdu, Mehmet Yasar
    • Korea-Australia Rheology Journal
    • /
    • v.21 no.3
    • /
    • pp.161-173
    • /
    • 2009
  • This study analyzes especially drag and lift models recently developed for fluid-solid, fluid-fluid or liquid-liquid two-phase flows to understand their applicability on the computational fluid dynamics, CFD modeling of pulsatile blood flow. Virtual mass effect and the effect of red blood cells, RBCs aggregation on CFD modeling of blood flow are also shortly reviewed to recognize future tendencies in this field. Recent studies on two-phase flows are found as very useful to develop more powerful drag-lift models that reflect the effects of blood cell's shape, deformation, concentration, and aggregation.

Effect of SAENGMAEKSAN extract on blood pressure and, regional cerebral blood flow (생맥산(生脈散)이 혈압(血壓) 및 국소뇌혈류량(局所腦血流量)에 미치는 영향(影響))

  • Sin, Dae-Cheol;Kim, Yeong-Gyun;Han, Jong-Hyeon;Mun, Gu;Kim, Jae-Seop
    • The Journal of Internal Korean Medicine
    • /
    • v.18 no.2
    • /
    • pp.167-176
    • /
    • 1997
  • The purpose of this study was to investigate the effect of SAENGMAEKSAN extract on blood pressure and regional cerebral blood flow in rats. 1. High concentration of SAENGMAEKSAN extract decresed mean blood pressure in rats. 2. By depend on the dosage of SAENGMAEKSAN extract incresed mean regional cerebral blood flow in rats.

  • PDF

The Effect of Transverse Vibration on Red Blood Cell Aggregation and Blood Viscosity

  • Shin, Se-Hyun;Ku, Yun-Hee;Park, Myung-Su;Suh, Jang-Soo
    • International Journal of Vascular Biomedical Engineering
    • /
    • v.1 no.2
    • /
    • pp.4-12
    • /
    • 2003
  • The present study investigated the effect of transverse vibration on the hemorheological characteristics of blood using a newly designed pressure-scanning capillary viscometer. As vibration was applied, aggregated blood cells (rouleaux) were disaggregated. The range of vibration frequency and amplitude are $0{\sim}100\;Hz$ and $0{\sim}0.8\;mm$, respectively for a capillary diameter 0.84 mm. As vibration increased, blood viscosity initially increased and tended to decrease. In order to delineate the unexpected results, the present study proposed two counteracting mechanisms of vibration related with red blood cell (RBC) aggregation affecting hemo-rheological properties. One is the reduction of RBC aggregation due to vibration causing an increase of blood viscosity. The other is forced cell migration due to the transverse vibration, which in turn forms a cell-free layer near the tube wall and causes a decrease of flow resistance.

  • PDF

A study on the determination of lead in whole blood by ICP/MS (ICP/MS에 의한 전혈 중 납의 분석방법 연구)

  • Park, Kyung Su;Kim, Sun Tae
    • Analytical Science and Technology
    • /
    • v.10 no.4
    • /
    • pp.240-245
    • /
    • 1997
  • An accurate analysis method for the determination of lead in whole blood by ICP/MS was developed. Whole blood samples were decomposed in microwave digestion system without any contamination and loss of lead. The 96 samples were analyzed by ICP/MS using mass$^{208}$ isotope of lead. Lead concentrations of human whole blood were ranged of $2.50{\sim}22.8{\mu}g/dL$. The accuracy of this analysis method was verified by analyzing of NIST SRM 955a series(lead in blood).

  • PDF

A Numerical Analysis on the Motion of Mechanical Heart Valve(MHV) and Characteristics of Blood Flow in an Elastic Blood Vessel (탄성혈관 내 기계식 인공심장판막(MHV)의 거동 및 혈액 유동 특성에 관한 수치해석적 연구)

  • Bang Jin-Seok;Choi Choeng-Ryul;Kim Chang-Nyung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.3 s.168
    • /
    • pp.154-161
    • /
    • 2005
  • In this study, the leaflet motion of a mechanical heart valve and the characteristics of two-dimensional transient blood flow in an elastic blood vessel have been numerically investigated by using fluid-structure interaction method. Here, blood has been assumed as a Newtonian, incompressible fluid. Pressure profiles have been used as boundary conditions at the ventricle and the aorta. As a result, closing motion of the leaflet is faster than opening one. While opening angles of leaflet grow up, vortex is detected at the sinus and backward of the leaflets. When the leaflet is fully closed, vortex is detected at the ventricle and at that moment maximum displacement of the elastic blood vessel is observed in the vicinity of the sinus region. Maximum displacement is caused in association with the blood flow that is oriented toward the elastic blood vessel.