• Title/Summary/Keyword: block iterative algorithm

Search Result 69, Processing Time 0.022 seconds

Design of robust LQR/LQG controllers by LMIs (Linear Matrix Inequalities(LMIs)를 이용한 강인한 LQR/LQG 제어기의 설계)

  • 유지환;박영진
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.988-991
    • /
    • 1996
  • The purpose of this thesis is to develop methods of designing robust LQR/LQG controllers for time-varying systems with real parametric uncertainties. Controller design that meet desired performance and robust specifications is one of the most important unsolved problems in control engineering. We propose a new framework to solve these problems using Linear Matrix Inequalities (LMls) which have gained much attention in recent years, for their computational tractability and usefulness in control engineering. In Robust LQR case, the formulation of LMI based problem is straightforward and we can say that the obtained solution is the global optimum because the transformed problem is convex. In Robust LQG case, the formulation is difficult because the objective function and constraint are all nonlinear, therefore these are not treatable directly by LMI. We propose a sequential solving method which consist of a block-diagonal approach and a full-block approach. Block-diagonal approach gives a conservative solution and it is used as a initial guess for a full-block approach. In full-block approach two LMIs are solved sequentially in iterative manner. Because this algorithm must be solved iteratively, the obtained solution may not be globally optimal.

  • PDF

Determination of N:M Corresponding Pairs between Block Polygon Sets from a Topographical Map and a Cadastral Map (지형도와 연속지적도의 가구계 폴리곤 집합간의 N:M 대응쌍 탐색)

  • Huh, Yong;Kim, Jung-Ok;Yu, Ki-Yun
    • Journal of Korea Spatial Information System Society
    • /
    • v.11 no.3
    • /
    • pp.47-49
    • /
    • 2009
  • In this paper, we proposed a new algorithm for determination of many-to-many corresponding pairs between block-polygon sets from the national topographical map and the cadastral map in Korea Land Information System, caused by different abstraction and generalization rules of the two maps. Our proposed algorithm starts from an assumption that a block-polygon for a N:M pair should significantly overlap at least one block polygon of the counterpart group, and determines N:M pairs using an iterative updating and searching with this overlapping analysis. This iteration process is terminated when the N:M corresponding pairs satisfy our predefined 1:1 corresponding condition.

  • PDF

Design of Novel Iterative LMS-based Decision Feedback Equalizer (새로운 반복 LMS 기반의 결정 궤환 등화기의 설계)

  • Choi, Yun-Seok;Park, Hyung-Kun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.11
    • /
    • pp.2033-2035
    • /
    • 2007
  • This paper proposes a novel iterative LMS-based decision feedback equalizer for short burst transmission with relatively short training sequence. In the proposed equalizer, the longer concatenated training sequence can provide the more sufficient channel information and the reused original training sequence can provide the correct decision feedback information. In addition, the overall adaptive processing is performed using the low complexity LMS algorithm. The study shows the performance of the proposed method is enhanced with the number of iterations and, furthermore, better than that of the conventional LMS-based DFEs with the training sequence of longer or equal length. Computational complexity is increased linearly with the number of iterations.

Finite Element Analysis of Shape Rolling Process using Destributive Parallel Algorithms on Cray T3E (병렬 컴퓨터를 이용한 형상 압연공정 유한요소 해석의 분산병렬처리에 관한 연구)

  • Gwon, Gi-Chan;Yun, Seong-Gi
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.5 s.176
    • /
    • pp.1215-1230
    • /
    • 2000
  • Parallel Approaches using Cray T3E which is NIPP (Massively Parallel Processors) machine are presented for the efficient computation of the finite element analysis of 3-D shape rolling processes. D omain decomposition method coupled with parallel linear equation solver is used. Domain decomposition is applied for obtaining element tangent stifffiess matrices and residual vectors. Direct and iterative parallel algorithms are used for solving the linear equations. Direct algorithm is_parallel version of direct banded matrix solver. For iterative algorithms, the well-known preconditioned conjugate gradient solver with Jacobi preconditioner is also employed. Moreover a new effective iterative scheme with block inverse matrix preconditioner, which is named by present authors, is presented and its results are compared with the one using Jacobi preconditioner. PVM and MPI are used for message passing and synchronization between processors. The performance and efficiency of each algorithm is discussed and comparisons are made among different algorithms.

Single Image Super-Resolution Using CARDB Based on Iterative Up-Down Sampling Architecture (CARDB를 이용한 반복적인 업-다운 샘플링 네트워크 기반의 단일 영상 초해상도 복원)

  • Kim, Ingu;Yu, Songhyun;Jeong, Jechang
    • Journal of Broadcast Engineering
    • /
    • v.25 no.2
    • /
    • pp.242-251
    • /
    • 2020
  • Recently, many deep convolutional neural networks for image super-resolution have been studied. Existing deep learning-based super-resolution algorithms are architecture that up-samples the resolution at the end of the network. The post-upsampling architecture has an inefficient structure at large scaling factor result of predicting a lot of information for mapping from low-resolution to high-resolution at once. In this paper, we propose a single image super-resolution using Channel Attention Residual Dense Block based on an iterative up-down sampling architecture. The proposed algorithm efficiently predicts the mapping relationship between low-resolution and high-resolution, and shows up to 0.14dB performance improvement and enhanced subjective image quality compared to the existing algorithm at large scaling factor result.

Analytical Approximation Algorithm for the Inverse of the Power of the Incomplete Gamma Function Based on Extreme Value Theory

  • Wu, Shanshan;Hu, Guobing;Yang, Li;Gu, Bin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.12
    • /
    • pp.4567-4583
    • /
    • 2021
  • This study proposes an analytical approximation algorithm based on extreme value theory (EVT) for the inverse of the power of the incomplete Gamma function. First, the Gumbel function is used to approximate the power of the incomplete Gamma function, and the corresponding inverse problem is transformed into the inversion of an exponential function. Then, using the tail equivalence theorem, the normalized coefficient of the general Weibull distribution function is employed to replace the normalized coefficient of the random variable following a Gamma distribution, and the approximate closed form solution is obtained. The effects of equation parameters on the algorithm performance are evaluated through simulation analysis under various conditions, and the performance of this algorithm is compared to those of the Newton iterative algorithm and other existing approximate analytical algorithms. The proposed algorithm exhibits good approximation performance under appropriate parameter settings. Finally, the performance of this method is evaluated by calculating the thresholds of space-time block coding and space-frequency block coding pattern recognition in multiple-input and multiple-output orthogonal frequency division multiplexing. The analytical approximation method can be applied to other related situations involving the maximum statistics of independent and identically distributed random variables following Gamma distributions.

Generalized SCAN Bit-Flipping Decoding Algorithm for Polar Code

  • Lou Chen;Guo Rui
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.4
    • /
    • pp.1296-1309
    • /
    • 2023
  • In this paper, based on the soft cancellation (SCAN) bit-flipping (SCAN-BF) algorithm, a generalized SCAN bit-flipping (GSCAN-BF-Ω) decoding algorithm is carried out, where Ω represents the number of bits flipped or corrected at the same time. GSCAN-BF-Ω algorithm corrects the prior information of the code bits and flips the prior information of the unreliable information bits simultaneously to improve the block error rate (BLER) performance. Then, a joint threshold scheme for the GSCAN-BF-2 decoding algorithm is proposed to reduce the average decoding complexity by considering both the bit channel quality and the reliability of the coded bits. Simulation results show that the GSCAN-BF-Ω decoding algorithm reduces the average decoding latency while getting performance gains compared to the common multiple SCAN bit-flipping decoding algorithm. And the GSCAN-BF-2 decoding algorithm with the joint threshold reduces the average decoding latency further by approximately 50% with only a slight performance loss compared to the GSCAN-BF-2 decoding algorithm.

An Iterative Soft-Decision Decoding Algorithm of Block Codes Using Reliability Values (신뢰도 값을 이용한 블록 부호의 반복적 연판정 복호 알고리즘)

  • Shim, Yong-Geol
    • The KIPS Transactions:PartC
    • /
    • v.11C no.1
    • /
    • pp.75-80
    • /
    • 2004
  • An iterative soft-decision decoding algorithm of block codes is proposed. With careful examinations of the first hard-decision decoding result, the candidate codewords are efficiently searched for. An approach to reducing decoding complexity and lowering error probability is to select a small number of candidate codewords. With high probability, we include the codewords which are at the short distance from the received signal. The decoder then computes the distance to each of the candidate codewords and selects the codeword which is the closest. We can search for the candidate codewords which make the error patterns contain the bits with small reliability values. Also, we can reduce the cases that we select the same candidate codeword already searched for. Computer simulation results are presented for (23,12) Golay code. They show that decoding complexity is considerably reduced and the block error probability is lowered.

Denoising ISTA-Net: learning based compressive sensing with reinforced non-linearity for side scan sonar image denoising (Denoising ISTA-Net: 측면주사 소나 영상 잡음제거를 위한 강화된 비선형성 학습 기반 압축 센싱)

  • Lee, Bokyeung;Ku, Bonwha;Kim, Wan-Jin;Kim, Seongil;Ko, Hanseok
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.4
    • /
    • pp.246-254
    • /
    • 2020
  • In this paper, we propose a learning based compressive sensing algorithm for the purpose of side scan sonar image denoising. The proposed method is based on Iterative Shrinkage and Thresholding Algorithm (ISTA) framework and incorporates a powerful strategy that reinforces the non-linearity of deep learning network for improved performance. The proposed method consists of three essential modules. The first module consists of a non-linear transform for input and initialization while the second module contains the ISTA block that maps the input features to sparse space and performs inverse transform. The third module is to transform from non-linear feature space to pixel space. Superiority in noise removal and memory efficiency of the proposed method is verified through various experiments.

Soft-Input Soft-Output Multiple Symbol Detection for Ultra-Wideband Systems

  • Wang, Chanfei;Gao, Hui;Lv, Tiejun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.7
    • /
    • pp.2614-2632
    • /
    • 2015
  • A multiple symbol detection (MSD) algorithm is proposed relying on soft information for ultra-wideband systems, where differential space-time block code is employed. The proposed algorithm aims to calculate a posteriori probabilities (APP) of information symbols, where a forward and backward message passing mechanism is implemented based on the BCJR algorithm. Specifically, an MSD metric is analyzed and performed for serving the APP model. Furthermore, an autocorrelation sampling is employed to exploit signals dependencies among different symbols, where the observation window slides one symbol each time. With the aid of the bidirectional message passing mechanism and the proposed sampling approach, the proposed MSD algorithm achieves a better detection performance as compared with the existing MSD. In addition, when the proposed MSD is exploited in conjunction with channel decoding, an iterative soft-input soft-output MSD approach is obtained. Finally, simulations demonstrate that the proposed approaches improve detection performance significantly.