• Title/Summary/Keyword: block code

Search Result 766, Processing Time 0.031 seconds

Structure Design System of Soundproofing Wall Using Green Stone (조경블록(그린스톤)을 이용한 방음벽 구조설계시스템)

  • Han, Jung-Geun;Han, Seung-Ho
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.3 no.4
    • /
    • pp.1-10
    • /
    • 2000
  • This study aims at the new design system development of landscape architecture structures, as soundproof wall using reinforced soil block. This structures, that is new soundproof wall system, have to be maintained stability on acting critical wind load, which is combined exist soundproof wall system and soundproof wall system using environmental green stone block. To the harmony of this system, the post block, so-called landscape block or cast block, is manufactured. It's possible to stand of the post bearing system combined with post-pile and post block. Through the comparison with a serious code for the acting wind load on the soundproof wall, the reasonable wind load could be calculated. Also, the mechanical stability on the green stone block was checked by the Lab. tests based on the UBC (Uniformed Building Code). Because the critical height of soundproof wall system using green stone generally was restricted, the new system demands to combination of the exist system and the new system. For the stability analysis of them, the utility program, SAP2000, was used. And, a semi-auto program on the design system of the new soundproof wall using green stone was developed, which can be easily use because of the simplification.

  • PDF

Compressive Stress Distribution of Concrete for Performance-Based Design Code (성능 중심 설계기준을 위한 콘크리트 압축응력 분포)

  • Lee, Jae-Hoon;Lim, Kang-Sup;Hwang, Do-Kyu
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.3
    • /
    • pp.365-376
    • /
    • 2011
  • The current Concrete Structural Design Code (2007) prescribe the equivalent rectangular stress block of the ACI 318 Building Code as concrete compressive stress distribution for design of concrete structures. The rectangular stress block may be enough for flexural strength calculation, but realistic stress-strain relationship is required for performance verification at selected limit state in performance-based design. Moreover, the ACI rectangular stress block provides non-conservative flexural strength for high strength concrete columns. Therefore a new stress distribution model is required for development of performance-based design code. This paper proposes a concrete compressive stress-strain distribution model for design and performance verification. The proposed model has a parabolic-rectangular shape, which is adopted by Eurocode 2 and Japanese Code (JSCE). It was developed by investigation of experimental test results conducted by the authors and other researchers. The test results cover high strength concrete as well as normal strength concrete. The stress distribution parameters of the proposed models are compared to those of the ACI 318 Building Code, Eurocode 2, Japanese Code (JSCE) and Canadian Code (CSA) as well as the test results.

A Method for Measuring and Evaluating for Block-based Programming Code (블록기반 프로그래밍 코드의 수준 및 취약수준 측정방안)

  • Sohn, Wonsung
    • Journal of The Korean Association of Information Education
    • /
    • v.20 no.3
    • /
    • pp.293-302
    • /
    • 2016
  • It is the latest fashion of interesting with software education in public school environment and also consider as high priority issue of curriculum for college freshman with programming 101 courses. The block-based programming tool is used widely for the beginner and provides several positive features compare than text-based programming language tools. To measure quality of programming code elaborately which is based script language, it is need to very tough manual process. As a result the previously research related with evaluation of block-based script code has been focused very simple methods in which normalize the number of blocks used which is related with programming concept. In such cases in this, it is difficult to measure structural vulnerability of script code and implicit programming concept which does not expose. In this research, the framework is proposed which enable to measure and evaluate quality of code script of block-based programming tools and also provides method to find of vulnerability of script code. In this framework, the quality metrics is constructed to structuralize implicit programming concept and then developed the quality measure and vulnerability model of script to improve level of programming. Consequently, the proposed methods enable to check of level of programming and predict the heuristic target level.

Bar Code Location Algorithm Using Pixel Gradient and Labeling (화소의 기울기와 레이블링을 이용한 효율적인 바코드 검출 알고리즘)

  • Kim, Seung-Jin;Jung, Yoon-Su;Kim, Bong-Seok;Won, Jong-Un;Won, Chul-Ho;Cho, Jin-Ho;Lee, Kuhn-Il
    • The KIPS Transactions:PartD
    • /
    • v.10D no.7
    • /
    • pp.1171-1176
    • /
    • 2003
  • In this paper, we propose an effective bar code detection algorithm using the feature analysis and the labeling. After computing the direction of pixels using four line operators, we obtain the histogram about the direction of pixels by a block unit. We calculate the difference between the maximum value and the minimum value of the histogram and consider the block that have the largest difference value as the block of the bar code region. We get the line passing by the bar code region with the selected block but detect blocks of interest to get the more accurate line. The largest difference value is used to decide the threshold value to obtain the binary image. After obtaining a binary image, we do the labeling about the binary image. Therefore, we find blocks of interest in the bar code region. We calculate the gradient and the center of the bar code with blocks of interest, and then get the line passing by the bar code and detect the bar code. As we obtain the gray level of the line passing by the bar code, we grasp the information of the bar code.

Two-Dimensional Hybrid Codes using Identity Matrix and Symmetric Balance Incomplete Block Design Codes for Optical CDMA (광 코드분할다중접속을 위한 단위행렬과 Symmetric Balance Incomplete Block Design 부호를 사용한 2차원 하이브리드 부호)

  • Jhee, Yoon Kyoo
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.4
    • /
    • pp.27-32
    • /
    • 2014
  • Two-dimensional hybrid codewords are generated by using each row of identity matrix for spatial encoding and nonideal symmetric balance incomplete block design(BIBD) code for spectral encoding. This spatial/spectral optical code-division multiple-access (OCDMA) network uses single-balanced detectors to abstract the desired information bits and to eliminate the multiple-access interference(MAI). Analytical results show that the number of simultaneous users increases significantly by using the proposed hybrid codes.

Beacon Color Code Scheduling for the Localization of Multiple Robots (다 개체 로봇의 위치인식을 위한 비컨 컬러 코드 스케줄링)

  • Park, Jae-Hyun;Lee, Jang-Myung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.5
    • /
    • pp.433-439
    • /
    • 2010
  • This paper proposes a beacon color code scheduling algorithm for the localization of multiple robots in a multi-block workspace. With the developments of intelligent robotics and ubiquitous technology, service robots are applicable for the wide area such as airports and train stations where multiple indoor GPS systems are required for the localization of the mobile robots. Indoor localization schemes using ultrasonic sensors have been widely studied due to its cheap price and high accuracy. However, ultrasonic sensors have some shortages of short transmission range and interferences with other ultrasonic signals. In order to use multiple robots in wide workspace concurrently, it is necessary to resolve the interference problem among the multiple robots in the localization process. This paper proposes an indoor localization system for concurrent multiple robots localization in a wide service area which is divided into multi-block for the reliable sensor operation. The beacon color code scheduling algorithm is developed to avoid the signal interferences and to achieve efficient localization with high accuracy and short sampling time. The performance of the proposed localization system is verified through the simulations and the real experiments.

Design of New Quasi-Orthogonal Space-Time Block Code with Minimum Decoding Complexity (최소 복호 복잡도를 갖는 새로운 준직교 시중간블록부호 설계)

  • Chae, Chang-Hyeon;Choi, Dae-Won;Jung, Tae-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.12A
    • /
    • pp.1219-1225
    • /
    • 2007
  • In this paper, we propose a new quasi-orthogonal space-time block code(QO-STBC) achieving full rate and full diversity for general QAM and quasi-static Rayleigh fading channels with four transmit antennas. This code possesses the quasi orthogonal property like the conventional minimum decoding complexity QO-STBC(MDC-QO-STBC), which allows independently a maximum likelihood(ML) decoding to only require joint detection of two real symbols. By computer simulation results, we show that the proposed code exhibits the identical BER performance with the existing MDC-QO-STBC. However, the proposed code has an advantage in the transceiver implementation since the original coding scheme may be modified so that increases of peak-to-average power ratio occur at only two transmit antennas, but the MDC-QO-STBC does at all of transmit antennas.

Construction of Block-LDPC Codes based on Quadratic Permutation Polynomials

  • Guan, Wu;Liang, Liping
    • Journal of Communications and Networks
    • /
    • v.17 no.2
    • /
    • pp.157-161
    • /
    • 2015
  • A new block low-density parity-check (Block-LDPC) code based on quadratic permutation polynomials (QPPs) is proposed. The parity-check matrix of the Block-LDPC code is composed of a group of permutation submatrices that correspond to QPPs. The scheme provides a large range of implementable LDPC codes. Indeed, the most popular quasi-cyclic LDPC (QC-LDPC) codes are just a subset of this scheme. Simulation results indicate that the proposed scheme can offer similar error performance and implementation complexity as the popular QC-LDPC codes.

Performance of W-CDMA System with SOVA-based Turbo Decoder in ITU-R Realistic Channel (ITU-R 실측채널에서 SOVA 기반의 터보부호를 적용한 W-CDMA 시스템의 성능 분석)

  • Jeon Jun-Soo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.8
    • /
    • pp.1613-1619
    • /
    • 2004
  • Turbo codes of long block sizes have been known to show very good performance in an AWGN channel and the turbo code has been strongly recommended as error correction code for W-CDMA in 3GPP(3rd Generation Partnership Project). Recently, turbo codes of short block sizes suitable for real time communication systems have attracted a lot of attention. Thus, in this paper we consider the turbo code of 1/3 code rate and short frame size of 192 bits in ITU-R channel model. We analyzed the performance of W-CDMA systems of 10MHz bandwidths employing RAKE receiver with not only MRC diversity but also SOVA-based turbo code.

A Fast and Dynamic Region-of-Interest Coding Method using the Adaptive Code-Block Discrimination Algorithm in JPEG2000 Images (JPEG2000 이미지에서 적응적 코드블록 판별 알고리즘을 이용한 동적 고속 관심영역 코딩 방법)

  • Kang, Ki-Jun;Seo, Yeong-Geon;Park, Jae-Heung;Yoo, Chang-Yeul;Park, Soon-Hwa;Lee, Jum-Suk;Lee, Bu-Kwon
    • The KIPS Transactions:PartB
    • /
    • v.14B no.5
    • /
    • pp.321-328
    • /
    • 2007
  • In this paper, we propose a fast and dynamic Region-of-Interest coding method using the adaptive code-block discrimination algorithm in JPEG2000 images which complements the implicit ROI coding method and the modified implicit ROI coding method. For reducing the time of discriminating the code block, the proposed method estimates the characteristics of the shape of ROI and makes the shape of boundaries, and classifies the patterns of each code block. The method improves the preferred processing and loss of wavelet coefficients of background within the ROI code blocks by adaptively classifying the code blocks with the percentage of content of the wavelet coefficients using the thresholds of ROI and background. Also, the priority control of wavelet coefficients of background within ROI code block supports the rapid ROI coding by processing in batch based on patterns unlike the existing methods that process with unit of wavelet coefficients. To show the usefulness of this method, we compared this to the existing methods. There is no difference in performance, but we confirmed very speedy in processing time.