• Title/Summary/Keyword: blind equalization

Search Result 169, Processing Time 0.023 seconds

Quadrant-partitioned Blind Equalization Algorithm for QAM Demodulation (QAM 복조용 4분면 분할 자력복구 채널등화 알고리즘)

  • Ryu, Seok-Kyu;Hwang, Hu-Mor
    • Proceedings of the KIEE Conference
    • /
    • 1998.11b
    • /
    • pp.627-629
    • /
    • 1998
  • We propose a robust blind equalization algorithm based on quadrant-partitioned constellations for QAM demodulation. The algorithm divides the received M-QAM constellations into simple four quadrant. The channel equalization for symbols in each quadrant can be accomplished fast and reliably using the Constant Modulus Algorithm(CMA) and the Stop-and-Go Algorithm(SGA). Test results confirm that the proposed algorithm with lower complexity outperforms both the CMA and the SGA in reducing the SER as well as the MSE at the equalizer output.

  • PDF

A Constant Modulus Algorithm Based on an Orthogonal Projection (기울기 벡터의 직교 정사형을 사용한 CMA 등화기에 관한 연구)

  • Lim, Jun-Seok
    • The Journal of the Acoustical Society of Korea
    • /
    • v.28 no.7
    • /
    • pp.640-645
    • /
    • 2009
  • CMA (Constant Modulus Algorithm) is one of the famous algorithms in blind channel equalization. Generally, CMA converges slowly and the speed of convergence is dependent on a step-size in the CMA procedure. Many researches have tried to speed up the convergence speed by applying a variable step-size to CMA. In this paper, we propose a new CMA algorithm with improved convergence performance. The improvement comes from an orthogonal projection of an average error gradient. We show the improvement in simulation results.

Blind channel equalization using fourth-order cumulants and a neural network

  • Han, Soo-whan
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.5 no.1
    • /
    • pp.13-20
    • /
    • 2005
  • This paper addresses a new blind channel equalization method using fourth-order cumulants of channel inputs and a three-layer neural network equalizer. The proposed algorithm is robust with respect to the existence of heavy Gaussian noise in a channel and does not require the minimum-phase characteristic of the channel. The transmitted signals at the receiver are over-sampled to ensure the channel described by a full-column rank matrix. It changes a single-input/single-output (SISO) finite-impulse response (FIR) channel to a single-input/multi-output (SIMO) channel. Based on the properties of the fourth-order cumulants of the over-sampled channel inputs, the iterative algorithm is derived to estimate the deconvolution matrix which makes the overall transfer matrix transparent, i.e., it can be reduced to the identity matrix by simple recordering and scaling. By using this estimated deconvolution matrix, which is the inverse of the over-sampled unknown channel, a three-layer neural network equalizer is implemented at the receiver. In simulation studies, the stochastic version of the proposed algorithm is tested with three-ray multi-path channels for on-line operation, and its performance is compared with a method based on conventional second-order statistics. Relatively good results, withe fast convergence speed, are achieved, even when the transmitted symbols are significantly corrupted with Gaussian noise.

Blind Channel Equalization Using Conditional Fuzzy C-Means

  • Han, Soo-Whan
    • Journal of Korea Multimedia Society
    • /
    • v.14 no.8
    • /
    • pp.965-980
    • /
    • 2011
  • In this paper, the use of conditional Fuzzy C-Means (CFCM) aimed at estimation of desired states of an unknown digital communication channel is investigated for blind channel equalization. In the proposed CFCM, a collection of clustered centers is treated as a set of pre-defined desired channel states, and used to extract channel output states. By considering the combinations of the extracted channel output states, all possible sets of desired channel states are constructed. The set of desired states characterized by the maximal value of the Bayesian fitness function is subsequently selected for the next fuzzy clustering epoch. This modification of CFCM makes it possible to search for the optimal desired channel states of an unknown channel. Finally, given the desired channel states, the Bayesian equalizer is implemented to reconstruct transmitted symbols. In a series of simulations, binary signals are generated at random with Gaussian noise, and both linear and nonlinear channels are evaluated. The experimental studies demonstrate that the performance (being expressed in terms of accuracy and speed) of the proposed CFCM is superior to the performance of the existing method exploiting the "conventional" Fuzzy C-Means (FCM).

Self-Organizing Map for Blind Channel Equalization

  • Han, Soo-Whan
    • Journal of information and communication convergence engineering
    • /
    • v.8 no.6
    • /
    • pp.609-617
    • /
    • 2010
  • This paper is concerned with the use of a selforganizing map (SOM) to estimate the desired channel states of an unknown digital communication channel for blind equalization. The modification of SOM is accomplished by using the Bayesian likelihood fitness function and the relation between the desired channel states and channel output states. At the end of each clustering epoch, a set of estimated clusters for an unknown channel is chosen as a set of pre-defined desired channel states, and used to extract the channel output states. Next, all of the possible desired channel states are constructed by considering the combinations of extracted channel output states, and a set of the desired states characterized by the maximal value of the Bayesian fitness is subsequently selected for the next SOM clustering epoch. This modification of SOM makes it possible to search the optimal desired channel states of an unknown channel. In simulations, binary signals are generated at random with Gaussian noise, and both linear and nonlinear channels are evaluated. The performance of the proposed method is compared with those of the "conventional" SOM and an existing hybrid genetic algorithm. Relatively high accuracy and fast search speed have been achieved by using the proposed method.

Gaussian Weighted CFCM for Blind Equalization of Linear/Nonlinear Channel

  • Han, Soo-Whan
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.14 no.3
    • /
    • pp.169-180
    • /
    • 2013
  • The modification of conditional Fuzzy C-Means (CFCM) with Gaussian weights (CFCM_GW) is accomplished for blind equalization of channels in this paper. The proposed CFCM_GW can deal with both of linear and nonlinear channels, because it searches for the optimal desired states of an unknown channel in a direct manner, which is not dependent on the type of channel structure. In the search procedure of CFCM_GW, the Bayesian likelihood fitness function, the Gaussian weighted partition matrix and the conditional constraint are exploited. Especially, in contrast to the common Euclidean distance in conventional Fuzzy C-Means(FCM), the Gaussian weighted partition matrix and the conditional constraint in the proposed CFCM_GW make it more robust to the heavy noise communication environment. The selected channel states by CFCM_GW are always close to the optimal set of a channel even when the additive white Gaussian noise (AWGN) is heavily corrupted. These given channel states are utilized as the input of the Bayesian equalizer to reconstruct transmitted symbols. The simulation studies demonstrate that the performance of the proposed method is relatively superior to those of the existing conventional FCM based approaches in terms of accuracy and speed.

Performance Improvements of WiBro System Using the 64QAM SOFM Prefiltering (64QAM SOFM 전처리기를 이용한 와이브로 시스템의 성능 개선)

  • Park, Jin-Woo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.5
    • /
    • pp.1125-1132
    • /
    • 2010
  • WiBro(Wireless Broadband Internet) is the standard of high-speed portable internet based on OFDMA/TDD (Orthogonal frequency division multiple access / Time division duplexing) techniques, and the subset of consolidated version of IEEE802.16e Wireless MAN standard. In this paper, we propose performance improvements of WiBro system using the 64QAM SOFM(Self-Organizing Feature Maps)prefiltering. Proposed method used the prefiltering SOFM neural network blind equalization in the Broadband 64 QAM WiBro system receiver. The prefiltering SOFM neural network constellates 64QAM that is transmitter data shape and the blind equalization removes ICI(Inter Carrier Interference). To verificate the proposed method usability, the MSE and the BER are simulated. The simulation results shown that is improved the performances of the proposed WiBro system using the 64QAM SOFM Prefiltering than the existing WiBro system.

A BUSSGANG-TYPE ALGORITHM FOR BLIND SIGNAL SEPARATION

  • Choi, Seung-Jin;Lyu, Young-Ki
    • Proceedings of the IEEK Conference
    • /
    • 1998.10a
    • /
    • pp.1191-1194
    • /
    • 1998
  • This paper presents a new computationally efficient adaptive algorithm for blind signal separation, which is able to recover the narrowband source signals in the presence of cochannel interference without a prior knowledge of array manifold. We derive a new blind signal separation algorithm using the Natural gradient 〔1〕from an information-theoretic approach. The resulting algorithm has the Bussgang property which has been widely used in blind equalization 〔12〕. Extensive computer simulation results comfirm the validity and high performance of the proposed algorithm.

  • PDF

Blind Adaptive Equalization of Partial Response Channels (부분 응답 채널에서의 블라인드 적응 등화 기술에 관한 연구)

  • 이상경;이재천
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.26 no.11A
    • /
    • pp.1827-1840
    • /
    • 2001
  • In digital data transmission/storage systems, the compensation for channel distortion is conducted normally using a training sequence that is known a priori to both the sender and receiver. The use of the training sequences results in inefficient utilization of channel bandwidth. Sometimes, it is also impossible to send training sequences such as in the burst-mode communication. As such, a great deal of attention has been given to the approach requiring no training sequences, which has been called the blind equalization technique. On the other hand, to utilize the limited bandwidth effectively, the concept of partial response (PR) signaling has widely been adopted in both the high-speed transmission and high-density recording/playback systems such as digital microwave, digital subscriber loops, hard disk drives, digital VCRs and digital versatile recordable disks and so on. This paper is concerned with blind adaptive equalization of partial response channels whose transfer function zeros are located on the unit circle, thereby causing some problems in performance. Specifically we study how the problems of blind channel equalization associated with the PR channels can be improved. In doing so, we first discuss the existing methods and then propose new structures for blind PR channel equalization. Our structures have been extensively tested by computer simulation and found out to be encouraging in performance. The results seem very promising as well in terms of the implementation complexity compared to the previous approach reported in literature.

  • PDF

Concurrent Equalizer with Squared Error Weight-Based Tap Coefficients Update (오차 제곱 가중치기반 랩 계수 갱신을 적용한 동시 등화기)

  • Oh, Kil-Nam
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.3C
    • /
    • pp.157-162
    • /
    • 2011
  • For blind equalization of communication channels, concurrent equalization is useful to improve convergence characteristics. However, the concurrent equalization will result in limited performance enhancement by continuing concurrent adaptation with two algorithms after the equalizer converges to steady-state. In this paper, to improve the convergence characteristics and steady-state performance of the concurrent equalization, proposed is a new concurrent equalization technique with variable step-size parameter and weight-based tap coefficients update. The proposed concurrent vsCMA+DD equalization calculates weight factors using error signals of the variable step-size CMA (vsCMA) and DD (decision-directed) algorithm, and then updates the two equalizers based on the weights respectively. The proposed method, first, improves the error performance of the CMA by the vsCMA, and enhances the steady-state performance as well as the convergence speed further by the weight-based tap coefficients update. The performance improvement by the proposed scheme is verified through simulations.