• Title/Summary/Keyword: blended cement

Search Result 280, Processing Time 0.026 seconds

Proper Mixing Ratio for Securing Quality of Free-form Panel (비정형 패널의 형상 품질확보를 위한 적정 배합비 도출)

  • Kim, Min-Sik;Park, Chae-Wool;Kim, Ki-Hyuk;Do, Sung-Lok;Lee, Dong-Hoon
    • Journal of the Korea Institute of Building Construction
    • /
    • v.19 no.5
    • /
    • pp.449-456
    • /
    • 2019
  • Recent developments in architectural technologies and programs have enabled architects to think creatively and design free-form architecture. however, there are many problems in the production technology of FCP(Free-Form Concrete Panel). In particular, reduced accuracy due to lack of free-form panel production technology can lead to redesign of buildings as a result, problems such as an increase in construction cost and period. Therefore, this experiment aimed to compensate the decrease of the accuracy according to the displacement difference and to derive the proper mixing ratio for maintaining the shape during the free-form panel curing. In this study, molds were made using paraffin that is a recyclable phase change material. Concrete Panel is usually produced from Portland cement, dead burn magnesia, phosphate, borax and fine aggregate. In this study, four mixing ratios of FCP were selected after each material was blended to determine the proper blending ratio of the fluidity phase, the water absorption rate and the water content of the test piece. FCP was fabricated on the basis of the selected four compounding ratios and thickness and error rate were measured. Based on the error rate of the measured FCP, the quality standard was satisfied among the four compounding ratios.

High purity C3A synthesis method and effect of CaCO3 on C3A initial hydration reaction (고순도 C3A 합성 방법 및 CaCO3가 C3A 초기 수화 반응에 미치는 영향)

  • Hye-Jin Yu;Woo Sung Yum
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.33 no.6
    • /
    • pp.244-249
    • /
    • 2023
  • In this study, various experimental parameters were investigated for high-purity C3A synthesis. As a results of experiment, it was verified that the calcined temperature was the most important parameter for the synthesis of high-purity C3A. In addition, more synthesis time was needed when large amount of C3A synthesis to achieve high-purity. Meanwhile, the C3A blended with CaCO3 showed different reaction products compared to normal cement because C15 and C30 had monocarbocaluminate as a reaction product at early stage of hydration. Furthermore, the production amount and formation rate of monocarboaluminate formation was different varying with the CaCO3 a mounts.

Study on the Evaluation CO2 Emission-Absorption of Concrete in the View of Carbonation (콘크리트의 탄산화 관점에서 CO2 배출량-흡수량 평가에 관한 연구)

  • Lee, Sang-Hyun;Lee, Sung-Bok;Lee, Han-Seung
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.1
    • /
    • pp.85-92
    • /
    • 2009
  • A concrete is considered unfriendly-environmental material because it uses cement which emits much $CO_2$ during producing process. However, a concrete absorbs $CO_2$ through carbonation process during service life. In this paper how much concrete absorbs $CO_2$ through carbonation was calculated using 1) concentration of carbonatable substances in concrete, 2) carbonated volume of concrete, 3) molecular weight of $CO_2$ based on references and the method was proposed. $CO_2$ emission from producing $1m^3$ concrete was calculated based on $CO_2$ emission datum of materials used in concrete. From using these methods that calculate $CO_2$ emission and absorption of concrete, assessment of $CO_2$ emission-absorption against a real apartment was conducted by subtracting absorption $CO_2$ according to service life from $CO_2$ emission in the process of making concrete. As a result, a ratio of absorption over emission of $CO_2$ through concrete carbonation according to service life 40, 60, 80 years was assessed about 3.65, 4.47, 5.18%. An objective of this study is to propose how to calculate emission - absorption of $CO_2$ from producing and using concrete. Although the result value, emission - absorption of $CO_2$, is 5.18% very low when the service life of an apartment is 80years, the value can be improved by reducing emission from using blended cement such as blast furnace slag or increasing replacement ratio of cement and increasing carbonated volume of concrete from expanding service life of a building. This study may be useful when $CO_2$ emission - absorption of concrete is evaluated in the further study.

An Experimental Study on the Hydration Heat of Concrete Using Phosphate based Inorganic Salt (인산계 무기염을 이용한 콘크리트의 수화 발열 특성에 관한 실험적 연구)

  • Jeong, Seok-Man;Kim, Se-Hwan;Yang, Wan-Hee;Kim, Young-Sun;Ki, Jun-Do;Lee, Gun-Cheol
    • Journal of the Korea Institute of Building Construction
    • /
    • v.20 no.6
    • /
    • pp.489-495
    • /
    • 2020
  • Whereas the control of the hydration heat in mass concrete has been important as the concrete structures enlarge, many conventional strategies show some limitations in their effectiveness and practicality. Therefore, In this study, as a solution of controling the heat of hydration of mass concrete, a method to reduce the heat of hydration by controlling the hardening of cement was examined. The reduction of the hydration heat by the developed Phosphate Inorganic Salt was basically verified in the insulated boxes filled with binder paste or concrete mixture. That is, the effects of the Phosphate Inorganic Salt on the hydration heat, flow or slump, and compressive strength were analyzed in binary and ternary blended cement which is generally used for low heat. As a result, the internal maximum temperature rise induced by the hydration heat was decreased by 9.5~10.6% and 10.1~11.7% for binder paste and concrete mixed with the Phosphate Inorganic Salt, respectively. Besides, the delay of the time corresponding to the peak temperature was apparently observed, which is beneficial to the emission of the internal hydration heat in real structures. The Phosphate Inorganic Salt that was developed and verified by a series of the aforementioned experiments showed better performance than the existing ones in terms of the control of the hydration heat and other performance. It can be used for the purpose of hydration heat of mass concrete in the future.

Hydration Characteristics according to First Curing Condition in Solid Hydrated by Hydro-Thermal Synthesis Reaction (수열합성경화체의 1차 양생조건에 따른 수화특성)

  • Kim, Jin-Man;Jung, Eun-Hye;Park, Sun-Gyu
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.5
    • /
    • pp.543-548
    • /
    • 2008
  • Solid hydrated by hydro-thermal synthesis reaction is cured two times, the first curing is the steam curing at atmospheric pressure and the second one is a high-pressure steam curing, that is autoclaving. Steam curing is to acquire the proper strength for the resistance of treatment in the first curing process, it was not evaluated properly so far. Because of ignorance about curing, some engineers even think that the dry curing is better than the steam curing. The relation between compressive strength of solid hydrated by hydrothermal synthesis reaction and curing condition are presented in this paper. In order to investigate the effect of curing on the strength properties of specimen, the hydration behavior of solid hydrated by hydro-thermal synthesis reaction has been studied over curing condition using XRD, DT-TGA and porosimeter, SEM analysis technique. The results show that the specimens which are cured with blended method of dry and steam curing appear to have better strength properties than that of dry curing and steam curing. Also, there are significant difference of hydration behavior among curing condition in the solid hydrated by hydro-thermal synthesis reaction.

The Experimental Study on Hydration Properties of Quaternary Component Blended High Fluidity Concrete with CO2 Reduction (탄소저감형 4성분계 고유동 콘크리트의 수화 특성에 관한 연구)

  • Choi, Yun-Wang;Oh, Sung-Rok;Jo, Jun-Hee;Kang, Hyun-Jin
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.4
    • /
    • pp.403-413
    • /
    • 2017
  • In this paper, to increase the use of industrial byproducts for $CO_2$ reduction and to improve construction performance, it was manufactured that $CO_2$ reduction type quaternary component high fluidity concrete (QC-HFC) with Reduced cement usage by more than 80% and its quality and hydration characteristics were evaluated. QC-HFC was found to satisfy the target performance, and the flow and mechanical properties were similar to those of conventional concrete. The drying shrinkage of QC-HFC decreased about twice compared with the conventional blend, and the hydration heat decreased about 36%. As a result, it can be concluded that the amount of cracks can be reduced by reducing temperature stress due to hydration heat reduction effect and reducing deformation due to relatively small temperature difference between inside and outside. Also, As a result of the simulation of the mass structure, the temperature cracking index of QC-HFC is 1.1 or more, and the cracking probability is reduced by about 35%, so that the crack due to temperature can be reduced.

Field Application of 80MPa High Strength Fire Resistant Concrete using Ternary Blended Cement (설계강도 80MPa 3성분계 고강도내화콘크리트의 현장적용 및 성과분석)

  • Kim, Seong-Deok;Kim, Sang-Yun;Bae, Ki-Sun;Park, Su-Hee;Lee, Bum-Sik
    • Journal of the Korea Institute of Building Construction
    • /
    • v.10 no.5
    • /
    • pp.113-119
    • /
    • 2010
  • Fire resistance and field tests for high-strength concrete(HSC) of 80MPa were carried out to evaluate whether or not it shows the same material properties even in the field condition of being mass-produced and supplied. As a result, it was found that fire resistant HSCs containing composite fiber(NY, PP) of 0.075% have great resistance to fire and spalling. In the field test, before the pumping air contents, slump flow, U-box, L-flow, compressive strength, gap of hydration temperature of interior and exterior of specimen and placing ratio per hour satisfied the required properties of HSC. However, after the pumping of HSC, as slump flow and L-flow were slightly less than required criterion, they need to be improved. In terms of hydration temperature of HSC, it was found to satisfy the related criterion. Packing ability as well as placing ratio per hour of HSC, which was about $44m^3$, show outstanding results. If slump flow of developed ternary HSC is improved after the pumping it can be useful for the construction of high-rise buildings.

Water Permeability Performance Evaluation of Mortar Containing Crack Self-healing Mineral Admixtures (균열 자기치유 재료 혼입 모르타르의 투수성능 평가)

  • Lee, Woong-Jong;Hwang, Ji-Soon;Ahn, Sang-Wook;Lee, Kwang-Myong
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.4
    • /
    • pp.463-469
    • /
    • 2016
  • In this paper, compressive strength and water permeability performance for two types of crack self-healing materials such as SH-PO-0 composed of mineral admixtures(expansive agent, swelling material and crystal growth agent) and SH-PO-(5, 15, 30) blended with SH-PO-0 and phosphate additive(PO) dissolving easily calcium ion, were evaluated. The test results show that the water flow of SH-PO-0 decreased steeply at the early age although compressive strength decreased about 9% at 28 days compared with OPC. The higher PO replacement ratio is, the lower compressive strength and more improved water permeability performance is, and thus, based on such results, adequate PO replacement ratio is 15%. It is also found that the self-healing performance of SH-PO-15 was quite improved at the early ages and however, the performance of SH-PO-15 is similar to one of SH-PO-0 at long-term ages, and 28 days compressive strength of SH-PO-15 decreased about 8% compared with SH-PO-0. In addition, it is confirmed from the analysis of SEM-EDS that calcium ions of SH-PO-15 were crystallized more than those of SH-PO-0.

Investigation of Tar/soot Yield of Bituminous and Low Rank Coal Blends (발전용 역청탄과 저열량탄 혼소시 Tar/Soot의 배출 특성 연구)

  • Lee, Byung Hwa;Kim, Jin Ho;Kim, Gyu Bo;Kim, Seng Mo;Jeon, Chung Hwan
    • Journal of Energy Engineering
    • /
    • v.23 no.2
    • /
    • pp.42-48
    • /
    • 2014
  • Soot and tar which were derived from combustion or pyrolysis processes in Puverized Coal(PC) furnace or boiler have been significantly dealing in a radiative heat transfer and an additional source of NOx. Furthermore, the increasing for the use of a coal with low caloric value gives rise to a lot of tar-soot yield and LOI in a recycled ash for using cement materials. So, the ash with higher tar-soot yield and LOI can not recycle due to decreased strength of concrete. In this study, tar-soot yields and flame structures were investigated using the LFR for a blending combustion with bituminous coal and sub-bituminous coal. Also, The investigation were conducted as each single coals and blending ratio. The coals are used in a doestic power plant. In the experimental results, sub-bituminous coal with high volatile contents shows longer soot cloud length than bituminous coal, but overall flame length was shorter than bituminous coal. Tar-soot yields of sub-bituminous coal is lower than those of bituminous coal. Combustion characteristics are different between single coal and blended coal. Therefore, finding an optimal coal blending ratio according to coal rank effects on tar-soot yields.

A Study on the Characteristics of Condensable Fine Particles in Flue Gas (배출가스 중 응축성미세먼지 특성 연구)

  • Gong, Buju;Kim, Jonghyeon;Kim, Hyeri;Lee, Sangbo;Kim, Hyungchun;Jo, Jeonghwa;Kim, Jeonghun;Gang, Daeil;Park, Jeong Min;Hong, Jihyung
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.32 no.5
    • /
    • pp.501-512
    • /
    • 2016
  • The study evaluated methods to measure condensable fine particles in flue gases and measured particulate matter by fuel and material to get precise concentrations and quantities. As a result of the method evaluation, it is required to improve test methods for measuring Condensable Particulate Matter (CPM) emitted after the conventional Filterable Particulate Matter (FPM) measurement process. Relative Standard Deviation (RSD) based on the evaluated analysis process showed that RSD percentages of FPM and CPM were around 27.0~139.5%. As errors in the process of CPM measurement and analysis can be caused while separating and dehydrating organic and inorganic materials from condensed liquid samples, transporting samples, and titrating ammonium hydroxide in the sample, it is required to comply with the exact test procedures. As for characteristics of FPM and CPM concentrations, CPM had about 1.6~63 times higher concentrations than FPM, and CPM caused huge increase in PM mass concentrations. Also, emission concentrations and quantities varied according to the characteristics of each fuel, the size of emitting facilities, operational conditions of emitters, etc. PM in the flue gases mostly consisted of CPM (61~99%), and the result of organic/inorganic component analysis revealed that organic dusts accounted for 30~88%. High-efficiency prevention facilities also had high concentrations of CPM due to large amounts of $NO_x$, and the more fuels, the more inorganic dusts. As a result of comparison between emission coefficients by fuel and the EPA AP-42, FPM had lower result values compared to that in the US materials, and CPM had higher values than FPM. For the emission coefficients of the total PM (FPM+CPM) by industry, that of thermal power stations (bituminous coal) was 71.64 g/ton, and cement manufacturing facility (blended fuels) 18.90 g/ton. In order to estimate emission quantities and coefficients proper to the circumstances of air pollutant-emitting facilities in Korea, measurement data need to be calculated in stages by facility condition according to the CPM measurement method in the study. About 80% of PM in flue gases are CPM, and a half of which are organic dusts that are mostly unknown yet. For effective management and control of PM in flue gases, it is necessary to identify the current conditions through quantitative and qualitative analysis of harmful organic substances, and have more interest in and conduct studies on unknown materials' measurements and behaviors.