• Title/Summary/Keyword: blasting excavation

Search Result 205, Processing Time 0.032 seconds

Dynamic Influence of Tunnel Blasting on Adjacent Structures for Various RMR Values (발파에 의한 터널 굴착시 RMR값에 따른 인접구조물의 동적 영향)

  • 허재록;황의석;이봉열;김학문
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.03a
    • /
    • pp.657-664
    • /
    • 2002
  • This study presents the influence of blasting-induced vibration on the adjacent structures in rocks of various RMR values. 3D finite element analysis was performed to simulate the behaviour of tunnel and adjacent structures during rock excavation. The blast loadings were evaluated from the blasting pressure which is depending on the type and amount of explosive charges. Influencing factors for the stability of adjacent structures and ground conditions were reviewed in terms of structural dimensions and RMR values. The stiffness and load of adjacent structures are modeled in the numerical analysis to Investigate blasting effects of the size of adjacent structures. The vibration velocity and maximum particle velocity was increase sharply when the RMR value changed from 30 to 50. The effect of particle velocity was minimized at the width of structure become 2 times of tunnel diameter.

  • PDF

A Study on Experimental Method of Blasting Vibration in Curing Concrete (양생중인 콘크리트에서의 발파진동의 영향 시험방법에 대한 연구)

  • Kim, Jang-Deuk;Kim, Yong-Ha
    • The Journal of Engineering Geology
    • /
    • v.19 no.3
    • /
    • pp.417-422
    • /
    • 2009
  • Tunnels that have recently been constructed are characterized by longer length than ever before and furthermore they frequently go through the ground area with poor conditions such as fractured zones. If ground strength is weak, plastic deformation of tunnel occurs, and occasionally a big fall may be brought about. Up to now, the construction work of tunneling has been executed as a sequential method placing the lining concrete after completion of excavation. Such a method requires a long time and much money to complete the tunnel. It is hard to ensure the stability of tunnel if tunnel is left undone for a long time after excavation in fracture zones or plastic grounds. For this reason, we tried to take simultaneous construction of tunnel excavation and lining concrete in order to not only shorten construction schedule but also stabilize the tunnel at the highly fractures zone as soon as possible. As preliminary consideration for simultaneous construction, in-situ tests are performed to calculate the isolation distance over which blasting vibration does not influence the strength of lining concrete. Improvement of ling form, placing method of concrete, ventilation using a dust collector, together with equipment arrangement, was made to assure the simultaneous construction work.

Estimation of Ground Vibrations Around a Pillar Due to Blast Loading and the Impact of Flyrocks (발파하중 및 비석의 충격에 의한 광주의 지반진동의 예측 연구)

  • Lee, Sang-Gon;Kang, Choo-Won;Chang, Ho-Min;Ryu, Pog-Hyun;Kim, Jang-Won;Song, Ha-Rim;Kim, Seung-Eun
    • Explosives and Blasting
    • /
    • v.28 no.1
    • /
    • pp.1-10
    • /
    • 2010
  • In blasting for lighting, fatigue behaviors of pillars such as destruction and deformation may occur due to blasting vibration and flyrock, which may cause collapses of cavities. This study aims to identify dynamic behavior of pillars to maintain efficient safety of cavities in large drafts. when they collide with flyrocks under blasting for the excavation. For the purpose, we compared ground vibration around pillar when flyrock collided with the pillar and that when explosive blast happened for the excavation. we conducted fragmentation analysis of the flyrock and compared impact vibration obtained from empirical equation with ground vibration obtained from regression analysis of real vibration data. also we compared those with results analyzed from numerical analysis.

A Case Study of Blasting with Electronic Detonator (전자뇌관을 활용한 발파 시공 사례)

  • Hwang, Nam-Sun;Lee, Dong-Hoon;Lee, Seung-Jae
    • Explosives and Blasting
    • /
    • v.34 no.4
    • /
    • pp.40-45
    • /
    • 2016
  • Sites, where explosives are used, are constantly under constraint of vibration and noise levels. If a sensitive area is located nearby the sites, mechanical excavation has been preferred rather than blasting. Recently, however, blasting using electronic detonators is applicable in the areas, where previously should be excavated by mechanical methods. $HiTRONIC^{TM}$ is a fourth-generation detonator that utilizes Hanwha Corporation's advanced electronic technology. The detonator contains IC-Chip, which allows delay times between 0~15,000ms with 1ms interval. Furthermore, the product can provide high accuracy(0.01%) for accurate-blasting. Electronic detonator is widely used in highway and railway construction sites, large limestone quarries, and other works. In this paper, several sites, in which HiTRONIC was used, are introduced in order to enhance understanding of electronic detonator.

Application of Full-Face Round by Sequential Blasting Machine in Tunnel Excavation (터널굴착에서 다단식 발파기에 의한 전단면 발파의 적용성 연구)

  • 조영동;이상은;임한욱
    • Tunnel and Underground Space
    • /
    • v.4 no.2
    • /
    • pp.132-143
    • /
    • 1994
  • Many methods and techniques to reduce ground vibrations are well known. Some of them are to adopt electric millisecond detonators with a sequential blasting machine or an initiating system with an adequate number of delay intervals. The types of electric detonators manufactured in korea include instantaneous, decisecond and millisecond delays but numbers of delay intervals are only limited from No.1 to No.20 respectively. It is not sufficient to control accurately millisecond time with these detonators in tunnel excavation. Sequential fire time refers to adding an external time delay to a detonators norminal firing time to obtain sequential initiation and it is determined by sequential timer setting. To reduce the vibration level, sequential blasting machine(S.B.M) with decisecond detonators was adopted. A total of 134 blasts was recorede at various sites. Blast-to-structure distances ranged from 20.3 to 42.0 meter, where charge weight varied from 0.24 to 0.75 kg per delay. The results can be summarized as follow: 1. The effects of sequential blasting machine on the vibration level are discussed. The vibration level by S.B.M are decreased approximately 14.38~18.05% compare to level of conventional blasting and cycle time per round can be saved. 2. The empirical equations of particle velocity were obtained in S.B.M and conventional blasting. V=K(D/W1/3)-n, where the values for n and k are estimated to be 1.665 to 1.710 and 93.59 to 137 respectively. 3. The growth of cracks due to vibrations are found but the level fall to within allowable value.

  • PDF

Analysis of the peak particle velocity and the bonding state of shotcrete induced by the tunnel blasting (발파시 터널 숏크리트의 최대입자속도와 부착상태평가 분석)

  • Hong, Eui-Joon;Chang, Seok-Bue;Song, Ki-Il;Cho, Gye-Chun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.12 no.3
    • /
    • pp.247-255
    • /
    • 2010
  • Bonding strength of shotcrete is a significant influential factor which plays the role of collapse prevention of tunnel crown and of debonding prevention of shotcrete induced by the blasting vibration. Thus, the evaluation of the shotcrete bonding state is one of the core components for shotcrete quality control. In this study, the peak particle velocities induced by blasting were measured on the shotcrete in a tunnel construction site and its effect on the bonding state of shotcrete is investigated. Drilling and blasting technique was used for the excavation of intersection tunnel connecting the main tunnel with the service tunnel. Blast-induced vibrations were monitored at some points of the main tunnel and the service tunnel. The shotcrete bonding state was evaluated by using impact-echo test coupled with the time-frequency domain analysis which is called short-time Fourier transformation. Analysis results of blast-induced vibrations and the time-frequency domain impact-echo signals showed that the blasting condition applied to the excavation of intersection tunnel hardly affects on the tunnel shotcrete bonding state. The general blasting practice in Korea was evaluated to have a minor negative impact on shotcrete quality.

A Case Study on the Blasting Analysis of Slope Using Monitored Vibration Waveform (실측진동파형을 이용한 비탈면 발파진동 해석 사례)

  • Park, Do-Hyun;Cho, Young-Gon;Jeon, Seok-Won
    • Explosives and Blasting
    • /
    • v.24 no.2
    • /
    • pp.41-50
    • /
    • 2006
  • Excavation by explosives blasting necessarily involves noise and vibration, which is highly prone to face claims on the environmental and structural aspects from the neighbors. When the blasting carried out in the vicinity of a structure, the effect of blasting vibration on the stability of the structure should be carefully evaluated. In the conventional method of evaluation, an equation for blast vibration is obtained from test blasting which is later used to determine the amount of charge. This method, however, has limitations in use since it does not consider topography and change in ground conditions. In order to overcome the limitations, dynamic numerical analysis is recently used in continuum or discontinuous models, where the topography and the ground conditions can be exactly implemented. In the numerical analysis for tunnels and rock slopes, it is very uncommon to simulate multi-hole blasting. A single-hole blasting pressure is estimated and the equivalent overall pressure at the excavation face is used. This approach based on an ideal case usually does not consider the ground conditions. And this consequently results in errors in calculation. In this presentation of a case study, a new approach of using blast waves obtained in the test blast is proposed. The approach was carried out in order to improve the accuracy in calculating blasting pressure. The stability of a structure in the vicinity of a slope blasting was examined using the newly proposed method.

Relationship between Rock Quality Designation and Blasting Vibration Constant "K" & Decay Constant "n" by Bottom Blasting Pattern (바닥발파에서 암질지수(RQD)와 발파진동상수 K, n의 관계)

  • 천병식;오민열
    • Geotechnical Engineering
    • /
    • v.11 no.3
    • /
    • pp.55-68
    • /
    • 1995
  • This paper is the analysis of the relationship between RQD and decay constant, blasting vi bration constant of cube root scaling and square root scaling, through experimental blast ins test in subway construction for excavation of shaft hole by bottom blasting. The magnitude of particle velocity is largely effected by the distance from blasting source, the maximum charge per delay and the properties of ground. In order to verify the effects of ground properties on blast-induced vibration, the relation-ship between magnitude of blasting vibration and Rock Quality Disignation which stands for joint property was studied. The results of test are verified that blasting vibration constant "K" and the absolute value("n") of decay constant relatively increse as RQD increased. According to the result, it can be predict the particle velocity by the blast -induced vibration in bottom blasting pattern.om blasting pattern.

  • PDF

Controlled Blasting Technique Applied to the Construction of the Canada Underground Research Laboratory (캐나다 Underground Research Laboratory 건설을 위한 조절발파기법의 적용)

  • Kwon Sang-Ki;Kuzyk Gregory W.
    • Explosives and Blasting
    • /
    • v.23 no.2
    • /
    • pp.1-14
    • /
    • 2005
  • The Korean Atomic Energy Research Institute is currently planning the construction of an Underground Research Tunnel to carry out research and development related to the disposal of high-level wastes from nuclear reactors used to generate electrical power. This paper discusses the excavation methods used to construct the Canadian Underground Research Laboratory and their application in planning for the construction of a similar underground laboratory and eventually an underground repository for high-level wastes in Korea.