• Title/Summary/Keyword: blast-furnace slag cement

Search Result 778, Processing Time 0.024 seconds

Experimental Study on Diffusivity of High Performance Concrete containing GGBF for Road Structures (고로슬래그 미분말 혼합 도로구조물용 고성능 콘크리트의 확산특성에 대한 실험적 고찰)

  • Han, Seoung-Woo;Kim, Hong-Sam;Kim, Jin-Cheol;Ahn, Tae-Ho;Ahn, Tae-Song
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.195-196
    • /
    • 2010
  • The objective of this experiments is to investigate chloride diffusivity of high performance concrete based binary cimentitious materials such as ordinary portland cement and ground granulated blast furnace slag. The results from the study will be utilized as the basic data and guideline in making standard mixproportions and the manufacture, construction work and quality control of HPC.

  • PDF

Rheological Properties of Binder Pastes for Self-Compacting Concrete

  • Park, Yon-Dong
    • KCI Concrete Journal
    • /
    • v.13 no.1
    • /
    • pp.35-41
    • /
    • 2001
  • This paper investigated rheological properties of binder pastes for self-compacting high performance concrete. Six mixtures of self-compacting concrete were initially prepared and tested to estimate self-compacting property. Then, the binder pastes used in self-compacting concrete were tested for rheological properties using a rotary type rheometer. Binder pastes with different water-binder ratios arid flow values were also examined to evaluate their rheological characteristics. The binders were composed of ordinary Portland cement, fly ash, two types of pulverized blast-furnace slag, and limestone powder. The flow curves of binder pastes were obtained by a rotary type rheometer with shear rate control. Slump flow, O-funnel time, box, and L-flow teats were carried out to estimate self-compacting property of concrete. The flow curves of binder pastes for self-compacting concrete had negligible yield stresses and showed an approximately linear behavior at higher shear rates beyond a certain limit. Test results also indicated that the binders incorporating fly ash are more appropriate than the other types of binders in quality control of self-compacting concrete.

  • PDF

Preparation and Properties of CSA Type Expansive Cement Using Industrial By-products (산업부산물을 이용한 CSA계 팽창시멘트의 제조 및 특성)

  • 송종택;조진상;전준영
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.2
    • /
    • pp.183-192
    • /
    • 2001
  • 산업부산물을 이용하여 3CaO.3Al$_2$O$_3$.CaSO$_4$(C$_4$A$_3$S) 클링커를 합성하였다. 이때, 원료 물질은 산업부산물로 플라이 애쉬, 고로 수쇄 및 괴재슬래그를 $Al_2$O$_3$원으로 그리고 부산석고를 SO$_3$원으로 이용하였으며, CaO원으로 천연석회석을 사용하였다. 제조된 $C_4$A$_3$S 클링커를 CaSO$_4$, CaO를 배합하여 CSA계 팽창재를 제조하였으며, 일반 포틀랜드 시멘트(OPC)에 10 wt.% 첨가하여 수화 및 물성 특성을 조사하였다. 주요 수화생성상은 에트링자이트 및 수산화칼슘이었다. 수화시 에트링자이트의 생성으로 인해 팽창 및 경화체가 치밀화되어 건조수축이 감소되었고, 강도(압출, 인장, 휨)가 향상되었다.

  • PDF

A Study on the Properties of Mixture Proportion and Compressive Strength of Concrete with the Kind of Mineral Admixtures (혼화재 종류에 따른 콘크리트의 배합 및 압축강도 특성에 관한 연구)

  • Lee Eun-Hi;Shon Myeong-Soo;Han Min-Cheoi;Cha Cheon-Soo;Kim Seong-Soo;Han Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • v.y2004m10
    • /
    • pp.51-54
    • /
    • 2004
  • This paper investigated the results of mixture proportion and compressive strength of concrete incorporating mineral admixtures. W/B and contents of mineral admixtures were selected as test parameters. According to test results, use of mineral admixtures resulted in a reduction of fluidity and air contents caused by increased fine particles and absorption effect of FA on reduction of AE agent. Thus, increase of SP and AE agent was needed to maintain the same fluidity and air content as plain concrete. At early stage, use of CKD was beneficial to the compressive strength while at 28days. incorporation of FA and BS had favorable effect on the compressive strength.

  • PDF

A Study on the Estimation Method of Concrete Compressive Strength Based on Machine Learning Algorithm Considering Mixture Factor (배합 인자를 고려한 Machine Learning Algorithm 기반 콘크리트 압축강도 추정 기법에 관한 연구)

  • Lee, Seung-Jun;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.05a
    • /
    • pp.152-153
    • /
    • 2017
  • In the construction site, it is necessary to estimate the compressive strength of concrete in order to adjust the demolding time of the form, and establish and adjust the construction schedule. The compressive strength of concrete is determined by various influencing factors. However, the conventional method for estimating the compressive strength of concrete has been suggested by considering only 1 to 3 specific influential factors as variables. In this study, six influential factors (Water, Cement, Fly ash, Blast furnace slag, Curing temperature, and humidity) of papers opened for 10 years were collected at three conferences in order to know the various correlations among data and the tendency of data. After using algorithm of various methods of machine learning techniques, we selected the most suitable regression analysis model for estimating the compressive strength.

  • PDF

Carbonation Mitigation of the High Volume Admixture Concrete according to Application Method of Carbonation Resistance Material (탄산화 억제제 사용 따른 혼화재 다량 치환 콘크리트의 탄산화 억제)

  • Jo, Man-Ki;Choi, Young-Doo;Son, Ho-Jung;Woo, Dae-Hun;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.05a
    • /
    • pp.271-273
    • /
    • 2012
  • This paper is to investigate the effect of waste cooking oil(WCO) on carbonation resistance of high volume fly ash and blast furnace slag concrete. WCO and paint were applied for carbonation resistance materials. As expected, the application of WCO to the concrete help it reduce carbonation depth remarkably, regardless of mixture types. This may be due to the fact that WCO makes the capillary pore block by activating saponification. It is found that the degree of carbonation reduce due to WCO is much higher than the case by Paint.

  • PDF

A Basic Study on the Effect of Number of Hidden Layers on Performance of Estimation Model of Compressive Strength of Concrete Using Deep Learning Algorithms (Hidden Layer의 개수가 Deep Learning Algorithm을 이용한 콘크리트 압축강도 추정 모델의 성능에 미치는 영향에 관한 기초적 연구)

  • Lee, Seung-Jun;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.05a
    • /
    • pp.130-131
    • /
    • 2018
  • The compressive strength of concrete is determined by various influencing factors. However, the conventional method for estimating the compressive strength of concrete has been suggested by considering only 1 to 3 specific influential factors as variables. In this study, nine influential factors (W/B ratio, Water, Cement, Aggregate(Coarse, Fine), Fly ash, Blast furnace slag, Curing temperature, and humidity) of papers opened for 10 years were collected at 4 conferences in order to know the various correlations among data and the tendency of data. The selected mixture and compressive strength data were learned using the Deep Learning Algorithm to derive an estimated function model. The purpose of this study is to investigate the effect of the number of hidden layers on the prediction performance in the process of estimating the compressive strength for an arbitrary combination.

  • PDF

Properties of lightweight matrix for inorganic insulation by cement types (시멘트 종류별 무기단열재용 경량 경화체의 특성)

  • Lim, Jeong-Jun;Pyeon, Su-Jeong;Lee, Sang-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.05a
    • /
    • pp.222-223
    • /
    • 2018
  • Recent government policies are increasing interest in zero-energy housing, a building that minimizes energy consumption (90% reduction). As the importance of building passive performance is emphasized, the role of insulation is increasing as a way to reduce indoor heat loss in order to minimize the use of cooling and heating energy. There are two main types of insulation. Organic insulation is widely used for various construction structures such as construction and industrial due to some merits such as the convenience of construction and construction cost. However, it has been pointed out as a main cause every time a fire accident occurs, Jecheon Sports Center', the fire damage of buildings caused by the use of organic insulation materials is expanding to social problems, so it is urgent to research on nonflammable inorganic insulation materials.

  • PDF

An Experimental Study on the Production and Mechanical Properties of Super-Workable Concrete (초유동 콘크리트의 제조 및 역학적 특성에 관한 실험적 연구)

  • Bae, Su-Ho;Youn, Sang-Dai;Lee, Dae-Hyoung
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.40 no.6
    • /
    • pp.104-113
    • /
    • 1998
  • The purpose of this experimental research is to produce the super-workable concrete using ordinary portland cement, blast-furnace slag lowder, and fly ash respectively, and investigate mechanical properties of super-workable concrete. For this purpose, after production of super-workable concrete for different unit weights of binder and percentages of fine aggregate, optimum mixing proportion of them was determined, and then mechanical properties of super-workable concrete such as static modulud of elasticity as well as compressive, tensile and flexural strength were tested and analyzed. Also, the mechanical performances of super-workable concrete were compared with those of high-strength concrete has an excellent mobility, compactability and segregation-resistance, but the strength of super-workable concrete is somewhat lower than that of high-strength concrete with equal mixing proportions of concrete.

  • PDF

A Study on Chemical Neutralization and Production of Planting Porous Concrete Using Low-Grade Iron Ore (저 품위 철광석을 사용한 식생용 투수 콘크리트의 중성화 및 제작에 관한 연구)

  • Eun, Hee-Chang;Lee, Min-Su;Bae, Choong-Yeol
    • Journal of Industrial Technology
    • /
    • v.27 no.A
    • /
    • pp.31-38
    • /
    • 2007
  • Recently produced concrete has a tendency to overcome environmental defects. Porous and planting Eco-concrete requires the neutralization process and enough void in concrete to contain water, to pass air freely, and provides necessary nutrients to vegetation roots. The biological environment in concrete is not suitable for planting because the concrete possesses strong alkali constituent of pH 11-13. This study evaluated the strength and serviceability of concrete as well as the chemical characteristics of concrete mixed by low-grade iron ore left in the abandoned mine and treated by Ammonium monohydrogen phosphate, $(NH_4)_2HPO_4$. Test variables include two kinds of coarse aggregates such as crushed stones and low-grade iron ore, the duration time and the period for neutralization treatment by Ammonium monohydrogen phosphate, $(NH_4)_2HPO_4$, and the proportion ratio of cement, blast furnace slag and silica fume.

  • PDF