• Title/Summary/Keyword: blast load

Search Result 212, Processing Time 0.022 seconds

Applicability Analysis of the FE Analysis Method Based on the Empirical Equation for Near-field Explosions (근거리 폭발에 대한 경험식 기반 유한요소해석 방법의 적용성 분석)

  • Hyun-Seop, Shin;Sung-Wook, Kim;Jae-Heum, Moon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.35 no.6
    • /
    • pp.333-342
    • /
    • 2022
  • The blast analysis method entails the use of an empirical equation and application of the pressure-time history curve as an explosive load. Although this method is efficient owing to its simple model and short run time, previous studies indicate that it may not be appropriate for near-field explosions. In this study, we investigated why different results were observed for the analysis method by considering an RC beam under near-field explosion conditions with the scaled distance of 0.4-1.0 as an example. On this basis, we examined the application range of the empirical analysis method by using the finite element analysis program LS-DYNA. The results indicate that the empirical analysis method based on data from far-field explosion tests underestimates the impulse. Thus, the calculated deflection of the RC beam would be smaller than the measured deflection and arbitrary Lagrangian-Eulerian (ALE) analysis result. The ALE analysis method is more suitable for near-field explosion conditions wherein the structural responses are large.

Numerical Analysis of Collapse Behavior in Industrial Stack Explosive Demolition (산업용 연돌 발파해체에서 붕괴거동에 관한 수치해석적 연구)

  • Pu-Reun Jeon;Gyeong-Jo Min;Daisuke Fukuda;Hoon Park;Chul-Gi Suk;Tae-Hyeob Song;Kyong-Pil Jang;Sang-Ho Cho
    • Explosives and Blasting
    • /
    • v.41 no.3
    • /
    • pp.62-72
    • /
    • 2023
  • The aging of plant structures due to industrialization in the 1970s has increased the demand for blast demolition. While blasting can reduce exposure to environmental pollution by shortening the demolition period, improper blasting design and construction plans pose significant safety risks. Thus, it is vital to consider optimal blasting demolition conditions and other factors through collapse behavior simulation. This study utilizes a 3-D combined finite-discrete element method (FDEM) code-based 3-D DFPA to simulate the collapse of a chimney structure in a thermal power plant in Seocheon, South Korea. The collapse behavior from the numerical simulation is compared to the actual structure collapse, and the numerical simulation result presents good agreement with the actual building demolition. Additionally, various numerical simulations have been conducted on the chimney models to analyze the impact of the duct size in the pre-weakening area. The no-duct, duct, and double-area duct models were compared in terms of crack pattern and history of Z-axis displacement. The findings show that the elapse-time for demolition decreases as the area of the duct increases, causing collapse to occur quickly by increasing the load-bearing area.