• Title/Summary/Keyword: blade row interaction

Search Result 9, Processing Time 0.023 seconds

Performance Prediction of the 1-Stags Axial Fan using Steady Coupled Blade Row Calculation Model (정상 간섭 익렬 계산 모델을 용한 1단 축류 송풍기의 성능 예측)

  • Sohn, Sang-Bum;Joo, Won-Gu;Cho, Kang-Rae
    • 유체기계공업학회:학술대회논문집
    • /
    • 1998.12a
    • /
    • pp.49-54
    • /
    • 1998
  • The flow inside an axial turbomachinery with multi-stage can be characterized as unsteady phenomena. In order to predict accurately these complex unsteady flow patterns including rotor-stator interaction effects, enormous computer resources are required. So it is not compatible in preliminary design process. In this study, steady coupled blade row flow with rotor-stator interaction solver is developed using interrow mixing model and used to predict the performance of the axial fan. To verify the computational method, the calculations are compared with experimental results and show satisfactory agreement with them. The interaction effects on the performance of the axial fan have also been studied by comparing the results of steady coupled blade row and steady single blade row flow calculation.

  • PDF

2-D Inviscid Analysis of Flow in One Stage of Axial Compressor (1단 축류압축기 내부 유동의 2차원 비점성 해석)

  • Kim HyunIl;Park JunYoung;Baek JeHyun;Jung HeeTaek
    • Journal of computational fluids engineering
    • /
    • v.5 no.2
    • /
    • pp.38-46
    • /
    • 2000
  • It has been indicated that the rotor/stator interaction has distinct causes of unsteadiness, such as the viscous vortex shedding, wake/stator interaction and potential rotor/stator interaction. In this paper, the mechanism of unsteady potential interaction in one stage axial compressor is numerically investigated for blade row ratio 1:1 and 2:3 at design point and for blade row ratio 2:3 at off-design point in two-dimensional view point. The numerical technique used is the upwind scheme of Van-Leer's Flux Vector Splitting(FVS) and Cubic spline interpolation is applied on zonal interface. In this study the flow unsteadiness due to potential interaction are found to be larger in blade row ratio 2:3 than in 1:1. The total pressure rise in blade row ratio 2:3 is closer to the real value in design point than that in 1:1. The change of unsteady pressure amplitude according to the variation of stator exit pressure is very small.

  • PDF

Two-Dimensional Moving Blade Row Interactions in a Stratospheric Airship Contra-Rotating Open Propeller Configuration

  • Tang, Zhihao;Liu, Peiqing;Guo, Hao;Yan, Jie;Li, Guangchao
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.16 no.4
    • /
    • pp.500-509
    • /
    • 2015
  • The numerical simulation of two-dimensional moving blade row interactions is conducted by CFD means to investigate the interactions between the front and rear propeller in a stratospheric airship contra-rotating open propeller configuration caused by different rotational speeds. The rotational speed is a main factor to affect the propeller Reynolds number which impact the aerodynamic performance of blade rows significantly. This effect works until the Reynolds number reaches a high enough value beyond which the coefficients become independent. Additionally, the interference on the blade row has been revealed by the investigation. The front blade row moves in the induced-velocity field generated by the rear blade row and the aerodynamic coefficients are influenced when the rear blade row has fast RPMs. The rear blade row moving behind the front one is affected directly by the wake and eddies generated by the front blade row. The aerodynamic coefficients reduce when the front blade row has slow RPMs while increase when the front blade row moves faster than itself. But overall, the interference on the front blade row due to the rear blade row is slight and the interference on the rear blade row due to the front blade row is much more significant.

Influence of Blade Row Distance on Performance and Flow Condition of Contra-Rotating Small-Sized Axial Fan

  • Shigemitsu, Toru;Fukutomi, Junichiro;Shimizu, Hiroki
    • International Journal of Fluid Machinery and Systems
    • /
    • v.5 no.4
    • /
    • pp.161-167
    • /
    • 2012
  • Small-sized axial fans are used as air coolers for electric equipment. There is a strong demand for higher power of fans according to the increase of quantity of heat from electric devices. Therefore, higher rotational speed design is conducted, although, it causes the deterioration of the efficiency and the increase of noise. Then, the adoption of contra-rotating rotors for small-sized fans is proposed for the improvement of the performance. In the case of contra-rotating rotors, blade row distance between the front and the rear rotors influences on the performance and the noise. Therefore, it is important to clarify the optimum blade row distance between front and rear rotors. The performance curves of the contra-rotating small-sized axial fan under the condition of different blade row distances are shown and the blade row interaction between the front and the rear rotors are discussed by the numerical results. Furthermore, the optimum blade row distance of the contra-rotating small-sized axial fan is considered.

Flutter Analysis of Multiple Blade Rows Vibrating Under Aerodynamic Coupling

  • Kubo, Ayumi;Namba, Masanobu
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.6-15
    • /
    • 2008
  • This paper deals with the aeroelastic instability of vibrating multiple blade rows under aerodynamic coupling with each other. A model composed of three blade rows, e.g., rotor-stator-rotor, where blades of the two rotor cascades are simultaneously vibrating, is considered. The displacement of a blade vibrating under aerodynamic force is expanded in a modal series with the natural mode shape functions, and the modal amplitudes are treated as the generalized coordinates. The generalized mass matrix and the generalized stiffness matrix are formulated on the basis of the finite element concept. The generalized aerodynamic force on a vibrating blade consists of the component induced by the motion of the blade itself and those induced not only by vibrations of other blades of the same cascade but also vibrations of blades in another cascade. To evaluate the aerodynamic forces, the unsteady lifting surface theory for the model of three blade rows is applied. The so-called k method is applied to determine the critical flutter conditions. A numerical study has been conducted. The flutter boundaries are compared with those for a single blade row. It is shown that the effect of the aerodynamic blade row coupling substantially modifies the critical flutter conditions.

  • PDF

Experimental Study of Film Cooling Behaviors at a Cylindrical Leading Edge

  • Kim S. M.;Kim Youn-J.
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2002.11a
    • /
    • pp.81-84
    • /
    • 2002
  • Dispersion of coolant jets in a film cooling flow field is the result of a highly complex interaction between the film cooling jets and the mainstream. In order to investigate the effect of blowing ratios on the film cooling of turbine blade, cylindrical body model was used. Mainstream Reynolds number based on the cylinder diameter was $7.1\;\times\;10^4$. The free-stream turbulence intensity kept at $5.0\%$ by using turbulence grid. The effect of coolant flow rates was studied for blowing ratios of 0.9, 1.3 and 1.6, respectively. The temperature distribution of the cylindrical model surface is visualized by infrared thermography (IRT). Results show that the film-cooling performance may be significantly improved by controlling the blowing ratio. As blowing ratio increases, the adiabatic film cooling effectiveness is more broadly distributed and the area protected by coolant increases. The mass flow rate of the coolant through the first-row holes is less than that through the second-row holes due to the pressure variation around the cylinder surface.

  • PDF

Turbofan and Pylon Flowfields Interaction in Turbofan Engines (터보팬엔진의 터보팬과 파일론 유동장 간섭에 관한 수치적 연구)

  • Joo, Won-Gu
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.8
    • /
    • pp.1164-1172
    • /
    • 1998
  • The three dimensional numerical method using actuator disk blade row model is applied for calculating the flowfield interaction between an outlet guide vane (OGV) and a pylon in a typical civil turbofan engine. The static pressure distortion produced by the pylon is decaying upstream but is still felt at the turbofan exit, and hence can significantly affect the fan performance. The OGV amplifies the static pressure perturbation decaying upstream. The calculation results show that cyclic OGV which consists of three types of blades with different exit angles can reduce more than half of the asymmetries of total pressure and static pressure propagated through the OGV with uniform exit blade angle.

The response of a blade row to a three-dimensional turbulent gust

  • Wei, Dingbing;Kim, Dae-Hwan;Cheong, Cheol-Ung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2010.05a
    • /
    • pp.74-75
    • /
    • 2010
  • Inflow broadband noise is generated when turbulence in the rotor wakes impinges on the downstream stator vanes. In this paper a three-dimensional model is developed to investigate the broadband noise due to turbulence-cascade interaction. In the newly-developed model, we consider the effects of incident turbulent gust component in span-wise direction on the inflow broadband noise. The quasi-three-dimensional theory is deduced based on the tonal analytic theory of Smith (1972) and two-dimensional broadband noise generalization by Cheong et al. (2006; 2009). Extending the modified LINSUB code, quasi-three-dimensional computational results are presented. Finally, we compare these computational results with time-domain results to validate the theory.

  • PDF

Numerical investigation of LP turbine-exhaust hood interaction in the steam turbine exhaust system (스팀터빈 Exhaust System에서 LP터빈과 Exhaust Hood 사이의 간섭에 대한 수치해석적 연구)

  • Im, Ji-Hyun;Joo, Won-Gu;Kim, Young-Sang;Im, Hong-Sik
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.291-294
    • /
    • 2006
  • Exhaust system of steam turbines consists of an annular diffuser and a collector and connects the last stage turbine and the condenser. The system is used to transfer the turbine leaving kinetic energy to potential energy while guiding the flow from turbine exit plane to the downstream condenser. In the steam turbine exhaust system, distorted pressure profile is arisen by the nonaxisymmetric collector structure at the diffuser outlet, and this distorted pressure is propagated to the last stage LP turbine exit plane through the diffuser, then the last stage LP turbine experiences asymmetric back pressure. It is known that the pressure recovery performance of diffuser is strongly influenced by diffuser inflow condition. In this study, the effect of exhaust system due to the changing of inlet flow condition is observed by using CFD, and the interaction of last stage LP turbine and exhaust system is investigated by using actuator disk model as modeling of turbine blade row of exhaust hood inlet.

  • PDF