• Title/Summary/Keyword: blade model

Search Result 782, Processing Time 0.021 seconds

Development of Blade Surface Modeling System Using Point Data (점 데이터를 이용한 블레이드 곡면 모델링 시스템 개발)

  • Kim, Yeoung-Il
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.10
    • /
    • pp.110-115
    • /
    • 2019
  • Stationary and rotating blades can be found in a steam turbine generator and the airfoil shapes of these blades can be defined by point data from an aerodynamic design system. The main design process of blades is composed of two steps: first, the blade surface is modeled with the point data; and then, the section data is generated which contains composite curves with line segments and arcs for CAE of the blade. The surface is modeled by a curve-net defined by the point data, which may be extended to obtain the section data to model the blade. This paper presents methods for automating the above-mentioned steps, which have been implemented in the commercial CAD/CAM system, Unigraphics, with API functions written in C-language. Finally, the proposed methods have been applied to model the blade of a steam turbine generator.

Toward a More Complete Analysis for Fluid-Structure Interaction in Helicopters

  • Kim, Kyung-Hwan;Shin, Sang-Joon;Lee, Jae-Won;Yee, Kwan-Jung;Oh, Se-Jong
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.7 no.2
    • /
    • pp.110-120
    • /
    • 2006
  • There have been developed many structural and fluid rotorcraft analysis models in rotorcraft community, and also lots of investigations have been conducted to combine these two models. These investigations turn out to be good at predicting the airloads precisely, but they have not taken the blade nonlinear deflection into account. For this reason, the present paper adopts a sophisticated structural model which can describe three-dimensional nonlinear deflection of the blade. And it is combined with two types of aerodynamic model. First one is generalized Greenberg type of finite-time aerodynamic model, which is originally established for a fixed wing, but later modified to be suitable for coupled flap-lag-torsional aeroelastic analysis of the rotor blade. Second aerodynamic model is based on the unsteady source-doublet panel method coupled with a free wake model. The advantages of the present method are capabilities to consider thickness of the blade and more precise wake effects. Transient responses of the airloads and structural deflections in time domain are mainly analyzed in this paper.

Wind tunnel test for the 20% scaled down NREL wind turbine blade (NREL 풍력터빈 블레이드 20% 축소모델 풍동시험 결과)

  • Cho, Taehwan;Kim, Cheolwan;Kim, Yangwon;Rho, Joohyun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.33.2-33.2
    • /
    • 2011
  • The 'NREL Phase VI' model with a 10.06m diameter was tested in the NASA Ames tunnel to make a reference data of the computational models. The test was conducted at the one rotational speed, blade tip speed 38m/s and the Reynolds number of the sectional airfoils in that test was around 1E6. The 1/5 scale down model of the 'NREL Phase VI' model was used in this paper to study the power characteristics in low Reynolds number region, 0.1E6 ~ 0.4E6 which is achievable range for the conventional wind tunnel facilities. The torque generated by the blade was directly measured by using the torque sensor installed in the rotating axis for a given wind speed and rotational speed. The power characteristics below the stall condition, lambda > 4, was presented in this paper. The power coefficient is very low in the condition below the Re. 0.2E6 and rapidly increases as the Re. increases. And it still increases but the variation is not so big in the condition above the Re. 0.3E6. This results shows that to study the performance of the wind turbine blade by using the scaled down model, the Re. should be larger than the 0.3E6.

  • PDF

Design and Structural Safety Evaluation of 1MW Class Tidal Current Turbine Blade applied Composite Materials (복합재료를 적용한 1MW급 조류 발전 터빈 블레이드의 설계와 구조 안전성 평가)

  • Haechang Jeong;Min-seon Choi;Changjo Yang
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.7
    • /
    • pp.1222-1230
    • /
    • 2022
  • The rotor blade is an important component of a tidal stream turbine and is affected by a large thrust force and load due to the high density of seawater. Therefore, the performance must be secured through the geometrical and structural design of the blade and the blade structural safety to which the composite material is applied. In this study, a 1 MW class large turbine blade was designed using the blade element momentum (BEM) theory. GFRP is a fiber-reinforced plastic used for turbine blade materials. A sandwich structure was applied with CFRP to lay-up the blade cross-section. In addition, to evaluate structural safety according to flow variations, static load analysis within the linear elasticity range was performed using the fluid-structure interactive (FSI) method. Structural safety was evaluated by analyzing tip deflection, strain, and failure index of the blade due to bending moment. As a result, Model-B was able to reduce blade tip deflection and weight. In addition, safety could be secured by indicating that the failure index, inverse reserve factor (IRF), was 1 or less in all load ranges excluding 3.0*Vr of Model-A. In the future, structural safety will be evaluated by applying various failure theories and redesigning the laminated pattern as well as the change of blade material.

Study on Performance Prediction of Industrial Axial Flow Fan with Adjustable Pitch Blades (산업용 조정 피치형 축류송풍기의 성능예측에 관한 연구)

  • Koo, Jae-In;Kim, Chang-Soo;Chung, Jin-Teak;Kim, Kwang-Ho
    • 유체기계공업학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.30-34
    • /
    • 2001
  • In the present study, we studied the method of predicting the on-design and on-design point performance of axial flow fan with adjustable pitch blades. With the change of stagger angle of axial flow fan with adjustable pitch blade, flow rate and pressure can be changed. Because of this merit adjustable pitch fans are used in many industrial facility. When changing stagger angle or estimating the performance at a wide range of off-design condition, incidence angle changes greatly as the flow rate changes. Therefore, the deviation angle at the blade exit is estimated by the correlation considering the effects of blade design, incidence angle variation. In the loss model, we used known pressure loss model for blade boundary layer and wake, secondary flow, endwall boundary layer and tip leakage flow. The results of modified deviation angle model and experiment were compared for the usefulness of the modified model.

  • PDF

풍력 블레이드의 전단 웹 모양의 최적화를 위한 구조 해석에 대한 연구

  • Kim, Jin-Myeong;Song, Seong-Il
    • Proceeding of EDISON Challenge
    • /
    • 2015.03a
    • /
    • pp.217-222
    • /
    • 2015
  • In this paper, a study was conducted for the optimization through shear web of shape the Edison program in wind power blade. We measured the displacement and stress distribution through two optimization methods to select the model with the smallest displacement and stress values. Before running the analysis, We try to find the inflection point through the shear web of the model and then analyze by introducing the geometric nonlinearity. The first optimization variables are introduced by the pitch angle and three web shapes. Third model such a honeycomb structure is good way to get an advantage for bending test. According to a method of previous optimization, third model is chosen and then the thickness of the web and blade as a variable is introduced, it is extracted as a result of displacement and the maximum stress per mass.

  • PDF

Development of PSCAD Simulation Model for Doubly-fed Induction-type Wind Power Generation System (이중여자 유도형 풍력 발전기의 PSCAD 시뮬레이션 모델 개발)

  • Jeong, Byoung-Chang;Kim, Hee-Jung;Chung, Yong-Ho;Jeon, Young-Soo;Kwak, No-Hong;Song, Seung-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.261-264
    • /
    • 2006
  • In this paper, doubly-fed induction-type wind power generation system simulation model for grid connection is developed. The simulation model is based on PSCAD/EMTDC and consists of rotor-blade, blade controller, generator power converter and generator controller Blade controller controls the blade pitch angle for starting, peak power limiting and emergency condition. Generator controller controls the generator output power to maximize the system efficiency. Simulation results are shown for the variable wind speed conditions. The simulation model can be utilized for study of actual interaction between wind turbine and grid for reliable operation and protection of power system.

  • PDF

Flat-type 와이퍼 블레이드의 내구 신뢰성 향상을 위한 연구

  • Jeong, Won-Seon;Seo, Yeong-Gyo;Kim, Hong-Jin;Jeong, Do-Hyeon
    • Proceedings of the Korean Reliability Society Conference
    • /
    • 2011.06a
    • /
    • pp.107-113
    • /
    • 2011
  • The windshield wiper consists of 4 parts: a blade, an arm, a linkage and a motor. The wiper blade makes contact with the windshield and is designed to be operated normally at an angle of 30~50 degrees to the front glass. If the contact pressure between the wiper blade and windshield surface is too high, noise and wear of the rubber will result. On the other hand, if the contact pressure is too low, the performance will do badly, since foreign substances such as dust and stains will not be removed well. The pressure and friction of the wiper blade has a great influence on its effectiveness in cleaning the front window. This is due to the contact of the rubber with the window. This paper presents the dynamic analysis method to estimate the performance of the flat type blade of the wiper system. The blade has a nonlinear characteristic since the rubber is an incompressible hyper-elastic and visco-elastic material. Thus, Structural dynamic analysis using a complex contact model for the blade is performed to find the characteristics of the blade. The flexible multi-body dynamic model is verified by the comparison between test and analysis result. Also, the optimization using the central composite design table is performed.

  • PDF

Reliability Evaluation of Constant Pressure Mechanism on Phased Array Ultrasonic Testing for Wind Turbine Blade (위상배열 탐상검사법을 이용한 풍력발전용 블레이드의 일정가압 메커니즘 신뢰성 평가)

  • Nam, Mun Ho;Chi, Su Chung;Lim, Sun;Lim, Seung Hwan;Jeong, Ye Chan
    • Journal of Applied Reliability
    • /
    • v.17 no.3
    • /
    • pp.236-245
    • /
    • 2017
  • Purpose: There is no established inspection system for composite wind blade during the fabrication stage even though the blades are one of the most important part at wind generation system, but phased array ultrasonic testing method has been continuously studied about wind turbine blade with composite. When wind turbine blade with complex shape by phased array probe is inspected, it is necessary to study for system keeping constant pressure using pressure device. Methods: In this paper, we propose constant pressure device for inspecting wind turbine blade by phased array ultrasonic test method. Design of the device controller is based on Hunt-Crossley model. We evaluate reliability of phased array ultrasonic inspection result that applicated constant pressure device. Result: Defect indication is precise and its error is small when constant pressure mechanism based on Hunt-Crossley model was used. Conclusion: When inspection is progressed using constant pressure mechanism, the reliability of composite wind blade inspection can be improved.

Thermoelastic eigenfrequency of pre-twisted FG-sandwich straight/curved blades with rotational effect

  • Souvik S. Rathore;Vishesh R. Kar;Sanjay
    • Structural Engineering and Mechanics
    • /
    • v.86 no.4
    • /
    • pp.519-533
    • /
    • 2023
  • This work focuses on the dynamic analysis of thermal barrier coated straight and curved turbine blades modelled as functionally graded sandwich panel under thermal environment. The pre- twisted straight/curved blade model is considered to be fixed to the hub and, the complete assembly of the hub and blade are assumed to be rotating. The functionally graded sandwich composite blade is comprised of functionally graded face-sheet material and metal alloy core. The constituents' material properties are assumed to be temperature-dependent, however, the overall properties are evaluated using Voigt's micromechanical scheme in conjunction with the modified power-law functions. The blade model kinematics is based on the equivalent single-layer shear deformation theory. The equations of motion are derived using the extended Hamilton's principle by including the effect of centrifugal forces, and further solved via 2D- isoparametric finite element approximations. The mesh refinement and validation tests are performed to illustrate the stability and accurateness of the present model. In addition, frequency characteristics of the pre-twisted rotating sandwich blades are computed under thermal environment at various sets of parametric conditions such as twist angles, thickness ratios, aspect ratios, layer thickness ratios, volume fractions, rotational velocity and blade curvatures which can be further useful for designing the blade type structures under turbine operating conditions.