• 제목/요약/키워드: blade mode

검색결과 120건 처리시간 0.021초

액체로켓엔진에서 음향해석을 통한 허브-블레이드 배플 형상의 최적화 (Acoustic Analysis for Design Optimization of Hub-Blade Baffle in Liquid Rocket Engine)

  • 김홍집;김성구;설우석
    • 대한기계학회논문집B
    • /
    • 제28권8호
    • /
    • pp.945-952
    • /
    • 2004
  • Acoustic characteristics of combustion chamber having various baffle configurations are numerically investigated by linear acoustic analysis to suggest reliable baffle specifications in first stage of KSLV-I. To determine the configuration of baffles, an acoustic modal analysis as well as the macroscopic analysis has been done. Hub has another effect of suppressing transverse acoustic mode by confining flow in baffled compartment over general effect of increase in acoustic damping of radial acoustic modes. So, a sufficient number of hub needs to be installed to obtain acoustic damping capacity. 3-blade configuration designed to suppress the first tangential mode has relatively low damping capacity, compared to 5 or 6-blade one. Optimum value of axial baffle length has been determined by comparing acoustic characteristics of combustion chamber having various baffle lengths.

연성강성 효과를 고려한 회전하는 다중 블레이드 시스템의 굽힘진동 해석 (Bending Vibration Analysis of Rotating Multi-blade Systems Considering the Coupling Stiffness Effect)

  • 임하성;권성훈;유홍희
    • 한국소음진동공학회논문집
    • /
    • 제16권9호
    • /
    • pp.912-918
    • /
    • 2006
  • A modeling method for the vibration analysis of rotating multi-blade systems considering the coupling stiffness effect is presented in this paper. Blades are assumed as cantilever beams and the coupling stiffness effect originates from disc or shroud between blades. As the angular speed, hub radius ratio, and the coupling stiffness vary, the natural frequencies of the system vary. Numerical results show that the coupling stiffness is very important to estimate the natural frequencies. Along with the natural frequencies, associated mode shapes, critical angular speed, and critical hub radius ratio are obtained through the analysis.

깃 형상이 터보기계의 동특성에 미치는 영향 (Effects of Blade Shape on the Dynamics of Turbo-machinery)

  • 전상복
    • 소음진동
    • /
    • 제8권3호
    • /
    • pp.477-484
    • /
    • 1998
  • An analytical procedure on the base of the substructure synthesis and assumed modes method is developed to investigate the flexibility effect of bladed disk assembly on vibrational modes of flexible rotor system. In modeling the system, Coriolis forces, gyroscopic moments, and centrifugal stiffening effects are taken into account. The coupled vibrations between the shaft and bladed disk are then extensively investigated through the numerical simulation of simplified models, with varying the shaft rotational speed and the prewist and stagger angles of the blade. It is found that the Coriolis and inertia forces and the inertia torque, which are induced by the one nodal diameter modes of the bladed disk and vary depending upon the stagger and prewist angles, lead to the coupled motions of the shaft and the bladed disk.

  • PDF

연성강성 효과를 고려한 회전하는 다중 블레이드 시스템의 굽힘진동 해석 (Bending Vibration Analysis of Rotating Multi-blade Systems Considering the Coupling Stiffness Effect)

  • 임하성;권성훈;유홍희
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 춘계학술대회논문집
    • /
    • pp.1354-1359
    • /
    • 2006
  • A modeling method for the vibration analysis of rotating multi-blade systems considering the coupling stiffness effect is presented in this paper. Blades are assumed as cantilever beams and the coupling stiffness effect originates from disc or shroud between blades. As the angular speed, hub radius ratio, and the coupling stiffness vary, the natural frequencies of the system vary. Numerical results show that the coupling stiffness is very important to estimate the natural frequencies. Along with the natural frequencies, associated mode shapes, critical angular speed, and critical hub radius ratio are obtained through the analysis.

  • PDF

Resonance and Instability of Blade-Shaft Coupled Bending Vibrations with In-plane Blade Vibration

  • Anegawa, Norihisa;Fujiwara, Hiroyuki;Okabe, Akira;Matsushita, Osami
    • International Journal of Fluid Machinery and Systems
    • /
    • 제1권1호
    • /
    • pp.169-180
    • /
    • 2008
  • As a major component of a power plant, a turbine generator must have sufficient reliability. Longer blades have lower natural frequency, thereby requiring that the design of the shaft and blade takes into account the coupling of the blade vibration mode, nodal diameter k=0 and k=1 with vibration of the shaft. The present work analyzes the coupling of the translation motion of the shaft with in-plane vibration of the blades with k=1 modes. At a rotational speed ${\Omega}_1=|{\omega}_s-{\omega}_b|$, the resonance of the blades has a relatively large amplitude. A violent coupled resonance was observed at a rotational speed ${\Omega}_2=|{\omega}_s+{\omega}_b|$. Resonance in blade vibration at ${\Omega}_1=|{\omega}_s-{\omega}_b|$ was experimentally confirmed.

저압터빈 블레이드의 균열 길이에 따른 동특성 변화 (Variation of Dynamic Characteristics of a Low Pressure Turbine Blade with Crack Length)

  • 양경현;송오섭
    • 한국소음진동공학회논문집
    • /
    • 제19권12호
    • /
    • pp.1281-1288
    • /
    • 2009
  • Variation of dynamic characteristics of a low pressure turbine blade with crack length is studied in this paper via both experiments and finite element model. Since most of the turbine blades used in domestic power plants are imported from abroad, it is necessary to understand their dynamic behavior in advance. When experimentally obtained natural frequencies and mode shapes are compared with those from FEM results, they are close to each other in their magnitude. Then, it is more feasible to use finite element model for analyzing the dynamic characteristics of a blade under various operation conditions (rotation speed, temperature, etc) as well as with a crack in the blade.

An efficient vibration control strategy for reliability enhancement of HAWT blade

  • Sajeer, M. Mohamed;Chakraborty, Arunasis;Das, Sourav
    • Smart Structures and Systems
    • /
    • 제26권6호
    • /
    • pp.703-720
    • /
    • 2020
  • This paper investigates the safety of the wind turbine blade against excessive deformation. For this purpose, the performance of the blade in the along-wind direction is improved by longitudinal stiffener made of shape memory alloy. The rationale behind the selection of this smart material is due to its ability to offer excellent thermo-mechanical behaviour at low strain. Here, Liang-Roger model is adopted for vibration control, and the super-elastic effects are utilised for blade stiffening. Turbulent wind fields are generated at the hub height using TurbSim and the corresponding loads are evaluated using blade element momentum theory. An efficient switching algorithm is developed along with performance curves that enable the designer to select an optimal mode of heating depending upon the operational scenario. Numerical results presented in this paper clearly demonstrate the performance envelope of the proposed stiffener and its influence on the reliability of the blade.

Flutter Analysis of Multiple Blade Rows Vibrating Under Aerodynamic Coupling

  • Kubo, Ayumi;Namba, Masanobu
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2008년 영문 학술대회
    • /
    • pp.6-15
    • /
    • 2008
  • This paper deals with the aeroelastic instability of vibrating multiple blade rows under aerodynamic coupling with each other. A model composed of three blade rows, e.g., rotor-stator-rotor, where blades of the two rotor cascades are simultaneously vibrating, is considered. The displacement of a blade vibrating under aerodynamic force is expanded in a modal series with the natural mode shape functions, and the modal amplitudes are treated as the generalized coordinates. The generalized mass matrix and the generalized stiffness matrix are formulated on the basis of the finite element concept. The generalized aerodynamic force on a vibrating blade consists of the component induced by the motion of the blade itself and those induced not only by vibrations of other blades of the same cascade but also vibrations of blades in another cascade. To evaluate the aerodynamic forces, the unsteady lifting surface theory for the model of three blade rows is applied. The so-called k method is applied to determine the critical flutter conditions. A numerical study has been conducted. The flutter boundaries are compared with those for a single blade row. It is shown that the effect of the aerodynamic blade row coupling substantially modifies the critical flutter conditions.

  • PDF

헬리콥터 Blade의 모드해석에 적용된 응력패턴해석 계측기법의 타당성 (Validation of the Strain Pattern Analysis (SPA) Measuring Technique)

  • Pakshir, Nabi
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1996년도 춘계학술대회논문집; 부산수산대학교, 10 May 1996
    • /
    • pp.361-369
    • /
    • 1996
  • The accurate prediction of modal parameters of a rotating blade is an important requirement in the assessment of the dynamics of a helicopter rotor. Indeed, predictions of flight loads and stability are normally dependent on initially predicting the undamped mode shapes. A measuring technique, known as Strain Pattern Analysis (SPA), appears to be the most successful technique for measuring the mode shapes of rotating blades. This method was developed to be used on actual aircraft so no attempt was made to measure rotating mode shapes directly in order to validate the SPA method. This report summarizes results from experimental investigations which were carried out to validate the SPA method for the prediction of aerodynamically damped modes of a rotating blade. A series of modal tests were carried out on two rotor models in which the non-rotating, undamped and aerodynamically damped rotating modes were measured directly (strain and displacement patterns). It is shown that the SPA method to be very successful in itself but there are a number of limitations in validating this technique. To provide data which could be used to confidently validate theoretical prediction codes, existing limitations should be addressed.

  • PDF

틸팅각에 따른 로터 블레이드 주위의 유동장 해석 (FLOW ANALYSIS AROUND THE ROTOR BLADE WITH TILT ANGLES)

  • 유영현;최종욱;김성초;김정수
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 학술대회
    • /
    • pp.166-170
    • /
    • 2008
  • The changing process from hovering mode to transition one is of importance to determine a stability of tilt-rotor aircraft, which is utilized in UAV(Unmaned Aerial Vehicle). The analysis on fluid flows and aerodynamic characteristics according to variation of tilting angle of rotor is essential step in development of tilt-rotor. In the present study, the computation domain is divided into the rotating and stationary regions in order to consider the rotating blades. For the convenient realization of various tilting angle as well as application of boundary condition, the whole computation region is constructed into sphere domain. The near farfield boundary condition is adopted. The airfoil used in computation is NACA 0012. The computation results for the hovering mode are validated by comparing with previously conducted experimental results. From the results, the flow fields around rotor blade and the aerodynamic characteristics in transition mode are observed. The computational result will provide the basis for development and performance evaluation of tilt-type aircraft.

  • PDF