• Title/Summary/Keyword: black matrix

Search Result 167, Processing Time 0.023 seconds

Specific Heat and Thermal Conductivity Measurement of XLPE Insulator and Semiconducting Materials (XLPE 절연층과 반도전층 재료의 비열 및 열전도 측정)

  • Lee Kyoung-Yong;Yang Jong-Seok;Choi Yong-Sung;Park Dae-Hee
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.55 no.1
    • /
    • pp.6-10
    • /
    • 2006
  • To improve mean-life and reliability of power cable, we have investigated specific heat (Cp) and thermal conductivity of XLPE insulator and semiconducting materials in 154(kV) underground power transmission cable. Specimens were respectively made of sheet form with EVA, EEA and EBA added $30[wt\%],$ carbon black, and the other was made of sheet form by cutting XLPE insulator in 154(kV) power cable. Specific heat (Cp) and thermal conductivity were measured by DSC (Differential Scanning Calorimetry) and Nano Flash Diffusivity. Specific-heat measurement temperature ranges of XLPE insulator were from $20[^{\circ}C]\;to\;90[^{\circ}C],$ and the heating rate was $1[^{\circ}C/mon].$ And the measurement temperatures of thermal conductivity were $25[^{\circ}C],\;55[^{\circ}C]\;and\;90[^{\circ}C].$ In case of semiconducting materials, the measurement temperature ranges of specific heat were from $20[^{\circ}C]\;to\;60[^{\circ}C],$ and the heating rate was $1[^{\circ}C/mon].$ And the measurement temperatures of thermal conductivity were $25[^{\circ}C],\;55[^{\circ}C].$ In addition we measured matrix of semiconducting materials to show formation and growth of carbon black in base resins through the SEM. From these experimental results, both specific heat and thermal conductivity were increased by heating rate because volume of materials was expanded according to rise in temperature.

Effects of Foaming Temperature and Carbon black Content on the Cure Behaviors and Foaming Characteristics of the Natural Rubber Foams (발포온도와 카본블랙 함량이 천연고무 발포체의 가황거동 및 발포특성에 미치는 영향)

  • Choi, Kyo-Chang;Kim, Joon-Hyung;Yoon, Jin-Min;Kim, Soo-Yeon
    • Elastomers and Composites
    • /
    • v.41 no.3
    • /
    • pp.147-156
    • /
    • 2006
  • To investigate the influence of the foaming temperature and carbon black content on the cure behaviors and foaming characteristics of the foams. natural rubber (NR) was foamed at five temperature zones (145, 150, 155, 160 and $165^{\circ}C$) and different feeding ratios of the carbon black. A decreasing trend of the scorch time, $t_{s2}$ and cure time, $t_{90}$ was observed upon increasing foaming temperature and carbon black content. The optimal temperature for vulcanization and foaming of NRs in this study was considered to be $165^{\circ}C$ where density of the loomed NRs is lower than those at other four temperature regions. The rule rate index of the NRs foamed at $145^{\circ}C$ is smaller than those at 150, 155, 160 and $165^{\circ}C$. The results of the expansion ratio and micrographs of the foamed NRs were founded to support the density characteristics. The thickness of each of the struts formed inside the rubber matrix decreases with increasing the foaming temperature, while it increases with increasing the carbon black content.

SNP-based and pedigree-based estimation of heritability and maternal effect for body weight traits in an F2 intercross between Landrace and Jeju native black pigs (제주재래흑돼지와 랜드레이스 F2 교배축군의 생체중에 대한 유전체와 가계도 기반의 유전력 및 모체효과 추정)

  • Park, Hee-Bok;Han, Sang-Hyun;Lee, Jae-Bong;Kim, Sang-Geum;Kang, Yong-Jun;Shin, Hyun-Sook;Shin, Sang-Min;Kim, Ji-Hyang;Son, Jun-Kyu;Baek, Kwang-Soo;Cho, Sang-Rae;Cho, In-Cheol
    • Journal of Embryo Transfer
    • /
    • v.31 no.3
    • /
    • pp.243-247
    • /
    • 2016
  • Growth traits, such as body weight, directly influence productivity and economic efficiency in the swine industry. In this study, we estimate heritability for body weight traits usinginformation from pedigree and genome-wide single nucleotide polymorphism (SNP) chip data. Four body weight phenotypes were measured in 1,105 $F_2$ progeny from an intercross between Landrace and Jeju native black pigs. All experimental animals were subjected to genotypic analysis using PorcineSNP60K BeadChip platform, and 39,992 autosomal SNP markers filtered by quality control criteria were used to construct genomic relationship matrix for heritability estimation. Restricted maximum likelihood estimates of heritability were obtained using both genomic- and pedigree- relationship matrix in a linear mixed model. The heritability estimates using SNP information were smaller (0.36-0.55) than those which were estimated using pedigree information (0.62-0.97). To investigate effect of common environment, such as maternal effect, on heritability estimation, we included maternal effect as an additional random effect term in the linear mixed model analysis. We detected substantial proportions of phenotypic variance components were explained by maternal effect. And the heritability estimates using both pedigree and SNP information were decreased. Therefore, heritability estimates must be interpreted cautiously when there are obvious common environmental variance components.

Nondestructive Damage Sensitivity for Functionalized Carbon Nanotube and Nanofiber/Epoxy Composites Using Electrical Resistance Measurement and Acoustic Emission (전기저항 측정과 음향방출을 이용한 표면 처리된 탄소 나노튜브와 나노 섬유 강화 에폭시 복합재료의 비파괴적 손상 감지능)

  • Kim, Dae-Sik;Park, Joung-Man;Kim, Tae-Wook
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.10a
    • /
    • pp.42-45
    • /
    • 2003
  • Nondestructive damage sensing and mechanical properties for acid-treated carbon nanotube (CNT) and nanofiber (CNF)/epoxy composites were investigated using electro-micromechanical technique and acoustic emission (AE). Carbon black (CB) was used to compare to CNT and CNF. The results were compared to the untreated case. The fracture of carbon fiber was detected by nondestructive acoustic emission (AE) relating to electrical resistivity under double-matrix composites test. Sensing for fiber tension was performed by electro-pullout test under uniform cyclic strain. The sensitivity for fiber damage such as fiber fracture and fiber tension was the highest for CNT/epoxy composites. Reinforcing effect of CNT obtained from apparent modulus measurement was the highest in the same content. For surface treatment case, the damage sensitivity and reinforcing effect were higher than those of the untreated case. The results obtained from sensing fiber damage were correlated with the morphological observation of nano-scale structure using FE-SEM. The information on fiber damage and matrix deformation and reinforcing effect of carbon nanocomposites could be obtained from electrical resistivity measurement as a new concept of nondestructive evaluation.

  • PDF

Nondestructive Damage Sensitivity of Carbon Nanotube and Nanofiber/Epoxy Composites Using Electro-Micromechanical Technique and Acoustic Emission (Electro-Micromechanical 시험법과 음향방출을 이용한 탄소 나노튜브와 나노섬유 강화 에폭시 복합재료의 비파괴적 손상 감지능)

  • Kim, Dae-Sik;Park, Joung-Man;Lee, Jae-Rock;Kim, Tae-Wook
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.04a
    • /
    • pp.117-120
    • /
    • 2003
  • Electro-micromechanical techniques were applied using four-probe method for carbon nanotube (CNT) or nanofiber (CNF)/epoxy composites with their content. Carbon black (CB) was used to compare with CNT and CNF. The fracture of carbon fiber was detected by nondestructive acoustic emission (AE) relating to electrical resistivity for double-matrix composites test. Sensing for fiber tension was performed by electro-pullout test under uniform cyclic strain. The sensitivity for fiber damage such as fiber fracture and fiber tension was the highest for CNT/epoxy composites, and in CB case they were the lowest compared with CNT and CNF. Reinforcing effect of CNT obtained from apparent modulus measurement was the highest in the same content. The results obtained from sensing fiber damage were correlated with the morphological observation of nano-scale structure using FE-SEM. The information on fiber damage and matrix deformation and reinforcing effect of carbon nanocomposites could be obtained from electrical resistivity measurement as a new concept of nondestructive evaluation.

  • PDF

An recognition of printed chinese character using neural network (신경망을 이용한 인쇄체 한자의 인식)

  • 이성범;오종욱;남궁재찬
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.18 no.9
    • /
    • pp.1269-1282
    • /
    • 1993
  • In this paper, we propose to method of recognizing printed chinese characters which combine the coventional deterministic methods and the neural networks. Firstly, we extract four directional vector of strokes from chinese characters. Secondly, we make the mesh of the center of gravity in the vector and then constitute the H x8 feature matrix using black pixel lenth from each meshs. This normalized feature matrix value offer as the input of neural network for classifying into the 14 character types. And this calssified character classify again into Busu group by the Busu recognizing neural network. Finally, we recognize each characters using the distance of similarity between input characters and reference characters. The usefulness of the proposed algorithm is evaluated by experimenting with recognizing the chinese characters.

  • PDF

Flexible Microelectronics; High-Resolution Active-Matrix Electrophoretic Displays

  • Miyazaki, Atsushi;Kawai, Hideyuki;Miyasaka, Mitsutoshi;Nebashi, Satoshi;Shimoda, Tatsuya;McCreary, Michael
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07a
    • /
    • pp.575-579
    • /
    • 2005
  • A beautiful, flexible active-matrix electrophoretic display (AM-EPD) device is reported. The flexible AM-EPD device has a $40.0{\times}30.0\;mm^2$ display area, measures about 0.27 mm in thickness, weighs about 0.45 g and possesses only 20 external connections. The flexible AM-EPD device displays clear black-and-white images with 5 gray-scales on $160{\times}120$ pixels. The display is free from residual image problems, because we use an area-gray-scale method on $320{\times}240$ EPD elements, each of which is driven with binary signals. Each pixel consists of 4 EPD elements. In addition, since the response time of the electrophoretic material is as long as approximately 400 ms and since the display possesses a large number of EPD elements, we have developed a special driving method suitable for changing EPD images comfortably. A complete image is formed on the AM-EPD device, consisting of a reset frame and several, typically 6, image frames.

  • PDF

Study on Mechanical Properties Modification of Styrene Butadiene Rubber Composites Filling with Graphene and Molybdenum Disulfide

  • Xu, Li Xiang;Sohn, Mi Hyun;Kim, Yu Soo;Jeong, Ye Rin;Cho, Ur Ryong
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.3
    • /
    • pp.52-59
    • /
    • 2019
  • Styrene-butadiene rubber (SBR) composites, incorporated with graphene, molybdenum disulfide and their hybrid in different filling ratio, were fabricated by a two roll-mill. The dispersion states of all the samples' matrix were employed by carbon black dispersion tester. The curing properties of the pre-vulcanized rubber composites were investigated, after molding by heating press machine, the tensile strength, storage modulus, friction coefficient, the swelling property had also been tested according to ASTM. The composite G1M10 (filling with 1 phr graphene and 10 phr molybdenum) showed the best mechanical properties and viscoelastic properties in this research with a better filler dispersion state and more compact matrix structure.

Petrological and Mineralogical Characteristics of Matrix of Pumice in Ulleung Island (울릉도 부석 기질의 암석.광물학적 특성)

  • Im, Ji-Hyeon;Choo, Chang-Oh;Jang, Yun-Deuk
    • Journal of the Mineralogical Society of Korea
    • /
    • v.24 no.3
    • /
    • pp.151-164
    • /
    • 2011
  • Mineralogical and petrological characteristics were investigated on matrix of dense gray, vesiculate gray, brown and black pumice in Ulleung Island by using XRD, FT-IR, XRF, SEM and thermal analysis. According to the analysis, most of pumice matrix are amorphous and include very small amount of sanidine and anorthoclase. Since the adsorption moistures, which commonly observed as O-H peak in FT-IR spectrum, are not identified in thermal analysis, it seems reasonable to conclude that content of the adsorption moisture has very low level. Although pumice has a large specific surface area, with long time elapsed after eruption, pumice matrix shows very low degree of hydration alteration due to the low level of water content. In SEM images, most surfaces of pumice show morphological characteristics such as various shapes of vesicle with wrinkled and thin walls resulted from ductile coalescence. Dense gray pumice formed in the initial stage includes small vesicles less than $15{\mu}m$ in size with subangular to angular shapes, free of ovoid vesicle. These characteristics are interpreted to have related to the hydrous environment derived from phreato-plinian eruption. Submicron particles observed as amorphous alumina silicate assemblages in vesicle surface are considered as particles sticked to the matrix surface through rapidly cooling process during ascent of alkali phonolitic magma. It indicates that these particles coexisted partly with crystallized alkali feldspar.

Applied Mineralogy for the Conservation of Dinosaur Tracks in the Goseong Interchange Area (35번 고속도로 고성 교차로 지역 공룡발자국의 보존을 위한 응용광물학적 연구)

  • Jeong Gi Young;Kim Soo Jin
    • Journal of the Mineralogical Society of Korea
    • /
    • v.17 no.3
    • /
    • pp.189-199
    • /
    • 2004
  • Cretaceous sedimentary rocks bearing dinosaur tracks in the Goseong interchange area were studied for their conservation and public display in the aspect of applied mineralogy. Black clay layers alternate with silt layers in the sedimentary rocks. The verical and horizontal fissures are commonly filled with calcite veinlets, supergenetic iron and manganese oxides. The rocks are composed of quartz, albite, K-feldspar, calcite, chlorite, illite, muscovite, and biotite, with minor apatite and rutile. Silt layers are relatively rich in calcite and albite, whereas clay layers are abundant in quartz, illite, and chlorite. Al, Fe, Mg, K, Ti, and P are enriched in the clay layers, while Ca, Na, and Mn in silt. Most of trace elements including V, Cr, Co, Ni, Cs, Zr, REE, Th, and U are enriched in clay layers. Inorganic carbon are present in silt layers as calcite, while organic carbon in black clay layers. The black clay layers were partly altered to yellow clay layers along the fissures, simultaneously with the decrease of organic carbon. Selective exfoliation of clay-rich black and yellow clay layers, calcite matrix of silt layers and calcite infillings of fissures are estimated as the major weakness potentially promoting chemical and physical degradation of the track-bearing rock specimens.