• 제목/요약/키워드: bitstream switching

검색결과 2건 처리시간 0.01초

Switching Picture Added Scalable Video Coding and its Application for Video Streaming Adaptive to Dynamic Network Bandwidth

  • Jia, Jie;Choi, Hae-Chul;Kim, Hae-Kwang
    • 방송공학회논문지
    • /
    • 제13권1호
    • /
    • pp.119-127
    • /
    • 2008
  • Transmission of video over Internet or wireless network requires coded stream capable of adapting to dynamic network conditions instantly. To meet this requirement, various scalable video coding schemes have been developed, among which the Scalable Video Coding (SVC) extension of the H.264/AVC is the most recent one. In comparison with the scalable profiles of previous video coding standards, the SVC achieves significant improvement on coding efficiency performance. For adapting to dynamic network bandwidth, the SVC employs inter-layer switching between different temporal, spatial or/and fidelity layers, which is currently supported with instantaneous decoding refresh (IDR) access unit. However, for real-time adaptability, the SVC has to frequently employ the IDR picture, which dramatically decreases the coding efficiency. Therefore, an extension of SP picture from the AVC to the SVC for an efficient inter-layer switching is investigated and presented in this paper. Simulations regarding the adaptability to dynamic network bandwidth are implemented. Results of experiment show that the SP picture added SVC provides an average 1.2 dB PSNR enhancement over the current SVC while providing similar adaptive functionality.

A network-adaptive SVC Streaming Architecture

  • ;임정연;이범식;김문철;함상진;김병선;이근식;박근수
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송공학회 2006년도 학술대회
    • /
    • pp.257-260
    • /
    • 2006
  • In Video streaming environment, we must consider terminal and network characteristics, such as display resolution, frame rate, computational resource, network bandwidth, etc. The JVT (Joint Video Team) by ISO/IEC MPEG and ITU-TVCEG is currently standardizing Scalable Video Coding (SVC). This can represent video bitstreams in different sealable layers for flexible adaptation to terminal and network characteristics. This characteristic is very useful in video streaming applications. One fully scalable video can be extracted with specific target spatial resolution, temporal frame rate and quality level to match the requirements of terminals and networks. Besides, the extraction process is fast and consumes little computational resource, so it is possible to extract the partial video bitstream online to accommodate with changing network conditions etc. With all the advantages of SVC, we design and implement a network-adaptive SVC streaming system with an SVC extractor and a streamer to extract appropriate amounts of bitstreams to meet the required target bitrates and spatial resolutions. The proposed SVC extraction is designed to allow for flexible switching from layer to layer in SVC bitstreams online to cope with the change in network bandwidth. The extraction is made in every GOP unit. We present the implementation of our SVC streaming system with experimental results.

  • PDF