• Title/Summary/Keyword: bit error rate

Search Result 1,550, Processing Time 0.032 seconds

Performance analysis on the asymmetric watermark using power spectrum domain (파워 스펙트럼 도메인 비대칭 워터마크의 성능 분석)

  • 서진수;유창동
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.40 no.3
    • /
    • pp.164-170
    • /
    • 2003
  • This paper proposes a novel method to detect Furon's asymmetric watermark by using a correlation detector that is mathematically tractable and simple. The performance of the proposed method is tested under various conditions. The experimental results matched the theoretical results well, showing that the correlation detector can indeed be used for the detection of asymmetric watermark. The proposed detector is aplied to both single and multiple bit embedded watermark. Bit error rate (BER), obtained from the experiment, was compared to the one obtained from the theory. As the embedded information increases, the BER of the Furon's asymmetric watermarking method also increases rapidly.

New QECCs for Multiple Flip Error Correction (다중플립 오류정정을 위한 새로운 QECCs)

  • Park, Dong-Young;Kim, Baek-Ki
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.5
    • /
    • pp.907-916
    • /
    • 2019
  • In this paper, we propose a new five-qubit multiple bit flip code that can completely protect the target qubit from all multiple bit flip errors using only CNOT gates. The proposed multiple bit flip codes can be easily extended to multiple phase flip codes by embedding Hadamard gate pairs in the root error section as in conventional single bit flip code. The multiple bit flip code and multiple phase flip code in this paper share the state vector error information by four auxiliary qubits. These four-qubit state vectors reflect the characteristic that all the multiple flip errors with Pauli X and Z corrections commonly include a specific root error. Using this feature, this paper shows that low-cost implementation is possible despite the QECC design for multiple-flip error correction by batch processing the detection and correction of Pauli X and Z root errors with only three CNOT gates. The five-qubit multiple bit flip code and multiple phase flip code proposed in this paper have 100% error correction rate and 50% error discrimination rate. All QECCs presented in this paper were verified using QCAD simulator.

A System Development, Performance Assessment, and Service Implementation of ATM-based High-rate Digital Subscriber Line (HDSL) (ATM 기반 HDSL 개발, 동 선로 상의 성능 평가 및 서비스 구현)

  • 양충열
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.23 no.6
    • /
    • pp.1562-1574
    • /
    • 1998
  • We, in this paper, have implemented T1, E1 and fractional E1 HDSL(High-bit-rate digital subscriber line) function over an ATM switching system. The maxi$\mu$ loop lengths for subscriber service and cell loss rates to meet the bit error rate of 10$^{-7}$ at transmission of 2B1Q HDSL data E1 rate over existing telephone copper wires in the presence of the significant impairments such as NEXT(Nearned crosstalk), impulse noise, power line noise and longitudinal over the CSAs environment consisting of 26 gauge and 25 gauge unloaded copper telephone lines has assessed. HDSL will intially be used to serve private-DS1, ISDN-BRA, and DLC feeders, later DS1 extension from optic fiber cable. We also present market provision for the HDSL.

  • PDF

Performance Analysis of IEEE 802.11b under IEEE 802.15.4 Environment (IEEE 802.15.4 환경 하에서의 IEEE 802.11b의 성능 해석)

  • Yoon, Dae-Kil;Shin, Soo-Young;Kwon, Wook-Hyun;Kim, Jung-Jun;Kim, Young-Ho;Shin, Young-Hee
    • Journal of The Institute of Information and Telecommunication Facilities Engineering
    • /
    • v.4 no.2
    • /
    • pp.9-17
    • /
    • 2005
  • Coexistence of different wireless systems that share the 2.4 GHz ISM frequency band is becoming one of the most important issue. This paper presents a model of the interference that IEEE 802.11b affected by IEEE 802.15.4. The packet error rate (PER) of IEEE 802.11b under the interference of IEEE 802.15.4 is analyzed. The PER is obtained by using the bit error rate (BER) and the collision time. Further, this paper suggests a packet length to reduce the effect of the IEEE 802.15.4 interference and obtain a maximum throughput of the IEEE 802.11b. The analytical results are validated using simulation.

  • PDF

Distributed Video Coding based on Adaptive Block Quantization Using Received Motion Vectors (수신된 움직임 벡터를 이용한 적응적 블록 양자화 기반 분산 비디오 코딩 방법)

  • Min, Kyung-Yeon;Park, Sea-Nae;Nam, Jung-Hak;Sim, Dong-Gyu;Kim, Sang-Hyo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.2C
    • /
    • pp.172-181
    • /
    • 2010
  • In this paper, we propose an adaptive block quantization method. The propose method perfrect reconstructs side information without high complexity in the encoder side, as transmitting motion vectors from a decoder to an encoder side. Also, at the encoder side, residual signals between reconstructed side information and original frame are adaptively quantized to minimize parity bits to be transmitted to the decoder. The proposed method can effectively allocate bits based on bit error rate of side information. Also, we can achieved bit-saving by transmission of parity bits based on the error correction ability of the LDPC channel decoder, because we can know bit error rate and positions of error bit in encoder side. Experimental results show that the proposed algorithm achieves bit-saving by around 66% and delay of feedback channel, compared with the convntional algorithm.

A Study on An Error-Resilient Constant Bit Rate Video Codec (에러 환경에 강한 항등비트율 동영상 부호화기에 관한 연구)

  • 한동원;송진규;김용구;최윤식
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.24 no.9B
    • /
    • pp.1721-1730
    • /
    • 1999
  • In this thesis, an error resilient video coding algorithm, under the error-prone environment such as wireless communication, is suggested. The suggested algorithm adapts the Classified VQ method for intra imagers that reduces some load by searching similar vectors. The Duplicate Vector Position Code is proposed for the higher compression efficiency and the robust decoding in error environment. As a result, the bitstream encoded by the proposed method is in a CBR(Constant Bit Rate) preventing from error propagation. The experiment that adds practical error to the encoded bitsrteam shows the error-robustness superior to H.263.

  • PDF

Augmented Quantum Short-Block Code with Single Bit-Flip Error Correction (단일 비트플립 오류정정 기능을 갖는 증강된 Quantum Short-Block Code)

  • Park, Dong-Young;Suh, Sang-Min;Kim, Baek-Ki
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.1
    • /
    • pp.31-40
    • /
    • 2022
  • This paper proposes an augmented QSBC(Quantum Short-Block Code) that preserves the function of the existing QSBC and adds a single bit-flip error correction function due to Pauli X and Y errors. The augmented QSBC provides the diagnosis and automatic correction of a single Pauli X error by inserting additional auxiliary qubits and Toffoli gates as many as the number of information words into the existing QSBC. In this paper, the general expansion method of the augmented QSBC using seed vector and the realization method of the Toffoli gate of the single bit-flip error automatic correction function reflecting the scalability are also presented. The augmented QSBC proposed in this paper has a trade-off with a coding rate of at least 1/3 and at most 1/2 due to the insertion of auxiliary qubits.

Fault Tolerant Cache for Soft Error (소프트에러 결함 허용 캐쉬)

  • Lee, Jong-Ho;Cho, Jun-Dong;Pyo, Jung-Yul;Park, Gi-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.1
    • /
    • pp.128-136
    • /
    • 2008
  • In this paper, we propose a new cache structure for effective error correction of soft error. We added check bit and SEEB(soft error evaluation block) to evaluate the status of cache line. The SEEB stores result of parity check into the two-bit shit register and set the check bit to '1' when parity check fails twice in the same cache line. In this case the line where parity check fails twice is treated as a vulnerable to soft error. When the data is filled into the cache, the new replacement algorithm is suggested that it can only use the valid block determined by SEEB. This structure prohibits the vulnerable line from being used and contributes to efficient use of cache by the reuse of line where parity check fails only once can be reused. We tried to minimize the side effect of the proposed cache and the experimental results, using SPEC2000 benchmark, showed 3% degradation in hit rate, 15% timing overhead because of parity logic and 2.7% area overhead. But it can be considered as trivial for SEEB because almost tolerant design inevitably adopt this parity method even if there are some overhead. And if only parity logic is used then it can have $5%{\sim}10%$ advantage than ECC logic. By using this proposed cache, the system will be protected from the threat of soft error in cache and the hit rate can be maintained to the level without soft error in the cache.

An Optimal Selection of Frame Skip and Spatial Quantization for Low Bit Rate Video Coding (저속 영상부호화를 위한 최적 프레임 율과 공간 양자화 결정)

  • Bu, So-Young;Lee, Byung-Uk
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.6C
    • /
    • pp.842-847
    • /
    • 2004
  • We present a new video coding technique to tradeoff frame rate and picture quality for low bit rate video coding. We show a model equation for selecting the optimal frame rate from the motion content of the source video. We can determine DCT quantization parameter (QP) using the frame rate and bit rate. For objective video quality measurement we propose a simple and effective error measure for skipped frames. The proposed method enhances the video quality up to 2 ㏈ over the H.263 TMN5 encoder.

Performance Analysis of MCDD in an OBP Satellite Communications System

  • Kim, Sang-Goo;Yoon, Dong-Weon
    • Journal of Communications and Networks
    • /
    • v.12 no.6
    • /
    • pp.529-532
    • /
    • 2010
  • Multi-carrier demultiplexer/demodulator (MCDD) in an on-board processing (OBP) satellite used for digital multimedia services has two typical architectures according to the channel demultiplexing procedure: Multistage multi-carrier demultiplexer (M-MCD) or poly-phase fast Fourier transform (PPF). During the channel demultiplexing, phase and quantization errors influence the performance of MCDD; those errors affect the bit error rate (BER) performance of M-MCD and PPF differently. In this paper, we derive the phase error variances that satisfy the condition that M-MCD and PPF have the same signal to noise ratio according to quantization bits, and then, with these results, analyze the BER performances of M-MCD and PPF. The results provided here may be a useful reference for the selection of M-MCD or PPF in designing the MCDD in an OBP satellite communications system.