• 제목/요약/키워드: biotite granite

검색결과 322건 처리시간 0.027초

감계 동(銅)-연(鉛)-아연(亞鉛)-금(金)-은광상(銀鑛床) 광석광물(鑛石鑛物)과 유체포유물(流體包有物) 연구(硏究) (Ore Minerals and Fluid Inclusions Study of the Kamkye Cu-Pb-Zn-Au-Ag Deposits, Repubulic of Korea)

  • 이현구;김상중
    • 자원환경지질
    • /
    • 제28권1호
    • /
    • pp.9-17
    • /
    • 1995
  • The Kamkye Cu-Pb-Zn-Au-Ag deposits occur as quartz veins that filled fault-related fractures of NW system developed in the Cretaceous Gyeongsang basin. Three major stages of mineral deposition are recognized: (1) the stage I associated with wall rock alteration, such as sericite, chlorite, epidote and pyrite, (2) the early stage II of base-metal mineralization such as pyrite, hematite, and small amounts of sphalerite and chalcopyrite. and the middle to late stage II of Cu-As-Sb-Au-Ag-S mineralization, such as sphalerite, chalcopyrite, galena with tetrahedrite, tennantite, pearceite, Pb-Bi-Cu-S system, argentite and electrum. (3) the stage III of supergene mineralization, such as covellite, chalcocite and malachite. K-Ar dating of alteration sericite is a late Cretaceous ($74.0{\pm}1.6Ma$) and it may be associated with granitic activity of nearby biotite granite and quartz porphyry. Fluid inclusion data suggest a complex history of boiling, cooling and dilution of ore fluids. Stage II mineralization occurred at temperatures between 370 to $220^{\circ}C$ from fluids with salinities of 8.4 to 0.9 wt.% NaCl. Early stage II($320^{\circ}C$, 2.0 wt.% NaCl) may be boiled due to repeated fracturing which opened up the hydrothermal system to the land surface, and which resulted in a base-metal sulfide. Whilst the fractures were opened to the surface, mixing of middle-late stage II ore fluids with meteoric waters resulted in deposition of Cu-As-Sb-Au-Ag minerals from low temperature fluids(${\leq}290^{\circ}C$). Boiling of ore fluids may be occured at a pressure of 112 bar and a depth of 412 m. Equilibrium thermodynamic interpretation of sphalerite-tetraherite assemblages in middle stage II indicates that the ore-forming fluid had log fugacities of $S_2$ of -6.6~-9.4 atm.

  • PDF

Evaluation of Nondestructive Diagnosis and Material Characteristics of Stone Lantern at Damyang Gaeseonsaji Temple Site in Korea

  • Lee, Chan Hee;Araki, Naruto
    • 보존과학회지
    • /
    • 제35권4호
    • /
    • pp.279-293
    • /
    • 2019
  • The stone lantern of the Damyang Gaeseonsaji temple site is a cultural heritage built during the Unified Silla period (AD 868). The reason for its value as a cultural property is due to wittern the background and the period created on inscription of the lamp stone engraved by letters. The stone lantern consists of two types of lithic tuffs for the 23 original properties, the replaced stones in 1991, and the biotite granite for its ground stones replaced in 2005. The lithic tuffs selected as the replacement parts in 1991 and 2017 have been examined and got to properties of hardly exposure moisture as well as very similar geochemical characteristics. There were various types of physical deterioration of the stone properties and structural cracks; in particular, on the northern side of the stylobates. Chemical and biological deterioration can be identified as black, white, and brown discolorations as well as by the presence of lichens, bryophytes, and herbaceous plants. In the evaluation of the physical properties of the stone lantern, the mean and maximum ultrasonic velocities were found to be similar in each direction. However, the lowest velocity on the east and south sides were found to be lower than those of other stone properties. It was found that physical damage to the stylobates resulted from water expansion in a freeze-to-thaw phenomena related to water content. Therefore, dismantling repair was carried out in the protection facility to restrict further water supply to the stone as much as possible.

삼랑진 칼데라의 화산작용과 화성과정 (Volcanisms and igneous processes of the Samrangjin caldera, Korea)

  • 황상구;김상욱;이윤종
    • 암석학회지
    • /
    • 제7권3호
    • /
    • pp.147-160
    • /
    • 1998
  • 삼랑진 칼데라에서는 삼랑진응회암의 강하응회암과 회류응회암, 칼데라후 관입체의 유문암 질암과 각섬석 흑운모 화강암, 광역구조 관입체의 세립질 화강섬록암과 흑운모 화강암 등이 관련된다. 화산작용은 먼저 화도에서 어떤 외부물과 상호작용되는 수증기플리니언 분출상으로 주로 강하회를 퇴적시켰으며 점차 물의 유입이 차단됨으로써 일시적으로 플리니언 분출상으로 전환되어 강하부석을 퇴적시켰다. 이는 다시 회류분출상으로 전환되어 고온의 화성쇄설 물질이 회류로 일시에 쏟아져 정치됨으로써 심하게 용결되었다. 분출초기에는 중앙화구로부터 회류가 발생되었지만 후기에는 환상열극화 구로의 전이가 일어났다. 이 결과로 칼데라 내부에 최고 630m 이상 두께의 회류응회암을 축적하였다. 이 회류분출의 결과로 마그마챔버의 지붕이 함몰되어 삼랑진 칼데라를 형성하게 되었다. 칼데라후 화산작용으로서 중앙회구와 환상단열대를 따라 유대상 유문암이 주입되어 중앙관임체와 환상암맥을 형성하고 다시 환상암맥 내측부에 유문대사이트 반암과 대사이트 반암이 정치되었다. 이후 남서측 환상 단열대를 따라 각섬석 흑운모 화강암이 관입되어 환상관입체의 일원이 되었다. 그리고 칼데라의 북동쪽 어영단층대를 따라 세립질 화강섬록암과 흑운모 화강암이 관입되면서 환상암맥을 절단하였다.

  • PDF

충남 예산지구 활석광상의 기원암과 활석화작용 (Original Rocks of the Talc Ore Deposits and their Steatitization in the Yesan Area, Choongnam, Korea)

  • 우영균;이동우
    • 한국지구과학회지
    • /
    • 제22권6호
    • /
    • pp.548-557
    • /
    • 2001
  • 충남 예산지구 활석광상지역에는 선캄브리아기의 유구편마암을 관입하고 쥬라기 흑운모화강암과 백악기의 산성 및 염기성 암맥의 관입을 받은 시대미상의 초염기성암체가 있다. 이 초염기성암체는 주로 사문암이고, 소량의 각섬암과 주로 사문암으로부터 형성된 활석광체를 포함한다. 이 사문암들은 사문석 반정과 layering의 발달정도에 따라 S1 ${\sim}$ S5의 5개 암석단위로 구분된다. 그러나 이들의 구성광물 및 화학조성들이 유사한 것으로 보아 사문암의 기원암은 동일마그마 기원의 감람암(dunite와 pyroxene peridotite)으로 해석된다. 사문암의 기원암인 감람암은 유구편마암이 받은 각섬암상의 광역변성작용시에 사문석화작용을 받아 사문암으로 되었고, 이 사문암으로부터의 주 활석화작용은 파쇄대를 따라 상승한 열수에 의한 열수변질작용으로 해석된다.

  • PDF

강화도(江華島) 동남부(東南部)에 분포(分布)하는 소위(所謂) 강화섬장암질암(江華閃長岩質岩)에 대(對)하여 (Petrology and petrochemistry of the so called "Ganghwa syenitic rock" in southeastern part of Ganghwa Island)

  • 김용준;오민수
    • 자원환경지질
    • /
    • 제11권2호
    • /
    • pp.47-57
    • /
    • 1978
  • The study focused on the petrology and petrochemistry of the so called "Ganghwa syenitic rocks" which intruded into metasediment of basement in southeastern part of Ganghwa Island. The geologic sequence of the mapped area was shown in table 1, 10 model analyses and 7 chemical analyses on the rock samples taken from the Ganghwa syenitic rocks and Manisan granite have been used to discuss the nomenclature of the rocks and petrological relationship between rock types. The petrograpical and petrochemical features based on, the analyses are as follows: 1) Ganghwa syenitic rocks consist of Ganghwa alkali syenite and Ganghwa diorite porphyry which based on the classification of the subcommision on systematics of igneous of IGUS. Ganghwa diorite porphyry which occured as dike forms are intruded into Ganghwa alkali syenite. The rock forming minerals of Ganghwa alkali syenite are composed of perthite, plagioclase, quartz, hornblend and chlorite in major, and zircon, apatite, sericite and magnetite in minor. Ganghwa diorite porphyries consist of plagioclase, biotite, hornblend, orthoclase and chlorite, with, porphyritic texture. 2) In silica-oxides variation (Fig. 2) and AMF diagram (Fig_ 3), the Ganghwa alkali syenite is similar to the trend of Daly's average basalt-andesite-dacite-rhyolite than Skaergaard which shows the trend of the fractional crystallization of magma, and equivalent to the alkali rock series by Peacock. 3) The general trend of data points shift to plagioclase, and are superimposed on the alkali rich terminal part of the granodiorite province of SW Finland in normative Q-Kf-Pl(Fig. 4) and Or-Ab-An diagram respectively. The above-mentioned evidences suggested that the Ganghwa syenitic rocks are the differential products resulted by assimilation of intermediated magma and metasedment rock under relatively rapid cooling condition.

  • PDF

물금철산의 광체발달 양상과 그에 따른 탐광계획 (On the Prospecting Plans of Mulkum Iron Mine Viewed by the Character and Mode of Occurrence of Ore bodyies)

  • 김선억;강양평
    • 자원환경지질
    • /
    • 제2권1호
    • /
    • pp.13-33
    • /
    • 1969
  • The Mulkum mine, located in Mulkum-myon, Yangsan-Kun, Kyeongsang Province, is one of the biggest iron mine in Korea. The geology of this mine and its vicinity consists of Chusan andesitic rocks and Datae-dong andesite porphyry of the Kyeongsang System which were intruded by biotite granite widely distributed near the vicinity of Mulkum-ni. The ore deposits, embedded in Dotae-dong andesite porphyry, are fissure-filling vein type in origin. Up to present ore bodies of Main vein, No. 2 vein, Eastern No. 1, 2 vein and Western No. 1 vein are exploited. Generally the veins strike N 10-25 E and dip to 60-90 SE. The proved length of vein is more than 500 meters and its depth 150 meters in Main vein with 3-4 meters of thickness in average. Ore minerals are mainly magnetite and locally associated with small amounts of hematite, sphecularite and chalcopyrite. Gangue minerals are quartz, epidote, chlorite, pyroxene, and garnet, etc. The modes of occurrence of vein are as follow; 1. Branching and parallel vein patterns are observed around main shaft in -1 level. 2. Multiple cymoid loops and subrectangular vein patterns are observed around main shaft in -2 level. 2. Single vein patterns are observed in -3 and -5 level. The ore-shoots plunge northeasterly about 20-30 degrees. In conclusion, the tectonically fractured zone belongs to the poorly mineralized zone and shoots are formed as single vein type. The general trends of one-shoots must be applied the prospecting of the deep-seated ore body in the deposits.

  • PDF

경상분지 고성지역의 화성암류에 대한 암석학적 연구 I. 주성분원소 지구화학과 K-Ar 방사성 연대 (Petrology of the Igneous Rocks in the Goseong Area, Gyeongsang Basin I. Major Element Geochemistry and K-Ar Radiometric Age)

  • 좌용주;박정미
    • 자원환경지질
    • /
    • 제29권5호
    • /
    • pp.561-573
    • /
    • 1996
  • The igneous rocks in the Goseong area, the southwestern part of the Gyeongsang basin, are composed of the volcanic rocks, Bulgugsa granites and intrusive andesites. The volcanic rocks are andesitic lapilli tuff, dacite and rhyolite. The granites are mainly of hornblende-biotite granite and intruded into the sedimentary basement and the volcanic rocks. The intrusion of andesitic dyke is thought to be the latest igneous activity in the area. In the variation diagrams of the major oxides, the three igneous rock types show different variational trends, indicating that they were from the different magmatic pulses. K-Ar radiometric ages suggest that the igneous activity in the Goseong area had occurred during late Cretaceous period. The ages of the volcanic rocks seem likely to have become younger due to the thermal effect by the granitic intrusion. The major element compositoinal variation of the granites from the Goseong area are compared with those from the Jindong, Geoje and Masan areas. By the comparison, it is easily understood that the Jindong granites are fairly different from the other three granites. On the other hand, the Goseong, Geoje and Masan granites generally show similar variational trends with each other, suggesting that they are of similar genetic origin. Combining the similarity of the geochemical features and the difference of the intruding ages between the Goseong and Masan granites, it seems like that the magma generation from the same source materials had occurred at a temporal interval.

  • PDF

쌍전중석광상(雙田重石鑛床)의 광물공생(鑛物共生)과 유체포유물연구(流體包有物硏究) (Mineral Paragenesis and Fluid Inclusion Study of Ssangjeon Tungsten Deposits)

  • 윤석태;박희인
    • 자원환경지질
    • /
    • 제15권4호
    • /
    • pp.221-233
    • /
    • 1982
  • Ssangjeon tungsten ore deposits is a complex pegmatite deposits embedded along the contact between pre-Cambrian Buncheon granite gneiss and amphibolite. This pegmatite vein developed 2 km along the strike and thickness varies from 10m to 40m. Mineral constituent of the normal pegmatite are quartz, microcline, plagioclase, muscovite, biotite, tourmaline and garnet. The vein paragenesis is complicated by repeated deposition of quartz but three distinct depositional stage can be recognized. Quartz A stage is the stage of the earliest milky white quartz deposition as a rock forming mineral of normal pegmatite. Quartz B stage is the stage of gray to dark gray quartz replace earlier formed normal pegmatite minerals. Quartz C stage is the stage of latest white translucent massive quartz replace quartz A and B. Tungsten ore minerals and other sulfide minerals were precipitated during quartz B stage. Ore minerals are ferberite and scheelite. Minor amount of molybdenite, arsenopyrite, pyrrhotite, pyrite, chalcopyrite, sphalerite, galena, pentlandite, bismuthinite, native bismuth and marcasite accompanied. Fluid inclusion in quartz A and B are gaseous inclusions and liquid inclusions are contained in quartz C as a primary inclusions. Salinity of inclusions in quartz A and B ranges from 4.5 to 9.5 wt. % and from 5.1 to 6.0 wt. % equivalent NaCl respectively. Homogenization temperature of quartz A; quartz B and quartz C ranges from 415 to $465^{\circ}C$, from 397 to $441^{\circ}C$ and from 278 to $357^{\circ}C$. $CO_2$ content of the ore fluid increased at the ends of quartz B stage.

  • PDF

대흥백운석광산(大興白雲石鑛山)의 지질광상(地質鑛床) 개사보고(槪査報告) (A Preliminary Report on the Geology and Ore Deposit of Daeheung Dolomite Mine)

  • 유병화
    • 자원환경지질
    • /
    • 제4권3호
    • /
    • pp.113-119
    • /
    • 1971
  • The Daeheung Dolomite Mine, which is about 6km south of Danyang, Chungcheongbugdo, is coincided with almost central portion of the Danyang quardrangle scaled in 1 : 50,000. The purpose of this report is to prepare a information for the economic evaluation on the mine. Geology of the region is composed of worm-eaten limestone, crystalline limestone, crystalline dolomite rock, sandstone and shale from bottom, those are applicable to socalled Dumugol and Maggol formation of Ordovician, and batholithic biotite granite is intruded the west-side of the ditto sedimentary rocks. The dolomite bed, emplaced in bottom of the upper limestone formation, so-called Maggol formation, is about 270m in thickness, and dips $30^{\circ}{\sim}50^{\circ}$ northwest. The facies of the dolomite rock contained many brucite crystals is not only coarse-grained crystalline, but also micro crystalline in contact metasomatic parts. 25 samples were taken from the two series, A and B, in the nearly crossed direction to the strike of the dolomite bed as shown in the geological map. They were chemically analysed on the components of MgO, CaO, and $SiO_2$ as shown in Table 2. The estimate ore reserves total some 107,200,000 metric tons above the 320m level with the following average contents: MgO 21.80%, CaO 29.27% and $SiO_2$ 0.64%. It is caused by brucite minerals that MaO content in the dolomite rock is higher than pure dolomite (21.7%). The dolomite ore is possible in use for magnesian fertilizer, magnesian cement and refractory material, especially the microcrystalline dolomite ore is useful for a refractory material in furnaces of iron industries.

  • PDF

처트-백운석 반응에 의한 석면상 투각섬석의 생성과 형태적 특성 (Asbestiform Tremolite Formed by Chert-Dolomite Reaction and Its Morphological Characteristics)

  • 정기영;최진범
    • 한국광물학회지
    • /
    • 제26권2호
    • /
    • pp.111-118
    • /
    • 2013
  • 제천시 수산면의 고생대 백운암에는 속성기원 흑색 처트 단괴들이 함유되어 있으며, 흑운모 화강암 관입과 관련된 접촉변성작용으로 백운석과 처트가 반응하여 단괴 주위로 변질대가 형성되었다. 변질 초기에 활석 및 방해석이 처트와 백운암을 교대하며 생성되었지만, 후기에 투각섬석이 활석과 방해석을 교대하였다. 처트 단괴들이 밀집한 백운암 층준에서는 회백색 투각섬석이 다량으로 산출된다. 주사전자현미경 및 광학현미경 관찰결과, 투각섬석은 다양한 종횡비의 신장된 입자 형태를 보이며, 수 mm의 좁은 공간에서 같이 산출된다. 침상-섬유상 입자들이 다발을 이루는 석면상 투각섬석도 있으나, 주상 입자들도 흔히 존재함이 확인되었다. 따라서 자연 유래 석면물질의 경우, 모든 투각섬석이 석면상 투각섬석은 아니므로 석면 정량 시 유의해야 한다. 수산 지역에서 석면상 각섬석의 산출 환경은 함처트 백운암, 열원, 수용성 유체의 존재가 투각섬석 석면의 지질학적 생성 조건이 될 수 있음을 지시한다.