• Title/Summary/Keyword: biotite gneiss

Search Result 130, Processing Time 0.026 seconds

Supergene Chloritization and Vermiculitization in Hornblende Gneiss, the Cheongyang Area, Korea (청양지역 각섬석 편마암의 녹니석화 및 질석화 작용 연구)

  • Song, Yungoo;Moon, Hi-Soo
    • Economic and Environmental Geology
    • /
    • v.24 no.3
    • /
    • pp.233-244
    • /
    • 1991
  • A biotite that substantially altered to chlorite and vermiculite in hornblende gneiss from Cheonyang, Korea, has been investigated with electron microprobe analysis. The data show the general variational trends of Ti and K-leaching with increased weathering. However, the chloritization is characterized by Si- conservative reaction and relatively dramatic increase of Al-for-(Fe+Mg) octahedral substitution, whereas the vermiculitization is characterized by total Mg-conservative and Ca-enriching exchange reaction. In the initiating stage the vermiculitization proceeded in a continuous decrease of the Al-for-Si tetrahedral substitution and an increase of the Al-for-(Fe+Mg) octahedral substitution, supporting the currently accepted weathering process. But it differs in the late stage, in which AI(IV) and Fe increase significantly. Recalculations of the structural formular for vermiculite on the basis of several assumptions indicate that the oxidation of Fe is necessary for vermiculite to form the reasonable strutural formular. The relative timing of the oxidation of Fe probably occurs in the late stage, supported by the substantial increase of the Al-for-Si tetrahedral substitution.

  • PDF

Petrology and petrochemistry of the Jurassic Daebo granites in the Pocheon-Gisanri area (포천 - 기산리 일대에 분포하는 쥬라기 대보화강암류의 암석 및 암석화학)

  • 윤현수;홍세선;이윤수
    • The Journal of the Petrological Society of Korea
    • /
    • v.11 no.1
    • /
    • pp.1-16
    • /
    • 2002
  • The study area is mostly composed of Precambrian Gyeonggi gneiss complex, Jurassic Daebo granites, Cretaceous tonalite and dykes, and so on. On the basis of field survey and mineral assemblage, the granites can be divided into three types; biotite granite (Gb), garnet biotite granite (Ggb) and two mica granite (Gtm). They predominantly belong to monzo-granites from the modes. Field relationship and K-Ar mica age data in the surrounding area suggest that intrusive sequences are older in order of Gtm, Ggb and Gb. Gb and Ggb, major study targets, occur as medium-coarse grained rocks, and show light grey and light grey-light pink colors, respectively. Mineral constituents are almost similar except for opaque in Gb and garmet in Ggb. Gb and Ggb have felsic, peraluminous, subalkaline and calc alkaline natures. In Harker diagram, both rocks show moderately negative trends of $TiO_2$, MgO, CaO, $Al_2O_3$, $Fe_2O_3$(t), $K_2O$ and $P_2O_5$ as $SiO_2$ contents increase. Among them, $TiO_2$, MgO and CaO show two linear trends. From the trends and the linear patterns in AFM, Sr-Ba and Rb-Ba-Sr relations, it is likely that they were originated from the same granitic magma and Ggb was differentiated later than Gb. REE concentrations normalized to chondrite value have trends of parallel LREE enrichment and HREE depletion. One data of Ggb showing a gradually enriched HREE trend may be caused by garnet accompaniment. Ggb have more negative Eu anomalies than Gb, suggesting that plagioclase fractionation in Ggb have occurred much stronger than that in Gb. In modal (Qz+Af) vs. Op, Gb and Ggb belong to magnetite-series and ilmenite-series, respectively. From the EPMA results, opaques of Gb are magnetite and ilmenite, and those of Ggb are magnetite-free ilmenite or not observed. Bimodal distribution of magnetic susceptibility reveals two different granites of Gb (332.6 ${mu}SI$) and Ggb (2.3 ${mu}SI$). Based on the paleomagnetic analysis as well as modal analysis, the main susceptibilities of Gb and Ggb reside in magnetite and mafic minerals, respectively. They belong to S-type granite of non-magnetic granite by susceptibility value. In addition, $SiO_2$ contents, $K_2O/Na_2O$, A/CNK molar ratio and ACF diagram support that they all belong to S-type granites.

Pedogenesis of Forest Soils(Kandiustalfs) Derived from Granite Gneiss in Southern Part of Korea (우리나라 남부지역(南部地域) 화강편마암질(花崗片麻巖質) 삼림토양(森林土壤)의 토양생성(土壤生成))

  • Cho, Hi Doo
    • Journal of Korean Society of Forest Science
    • /
    • v.86 no.2
    • /
    • pp.186-199
    • /
    • 1997
  • The soils derived from granite gneiss occupy almost one third of the land area in Korea. The soils under forest vegetation, formed on granite gneiss, in Sun chon-shi, Chollanam-do in southern part of Korea, were studied to evaluate the weathering and the transformation of primary minerals into secondary minerals, clay minerals. The studied soils contained large amounts of ferromagnesian minerals, weathered biotites and were well weathered, strongly acid and low in organic matters and in ration exchange capacity. The clay contents in the Bt horizon were almost two times higher than those in the C horizon. The O horizon had a thin layer which consisted of a little decomposed plant components with a granic fabric and high porosity, and showed the micromorphological characteristics of moder humus. The related distribution pattern of the E horizon were enaulic and large amounts of silts and small amounts of sand grains were another characteristics of the E horizon. The most striking micromorphological features were multilaminated clay coating and infillings in the voids in the Bt and C horizons, and generally limpid ferriargillans ejected from the biotites and imparted red color to the soils in the Bt horizon. High clay contents in the Bt horizon was not only due to clay translocation, but also due to intensive in situ mineral weathering in this horizon. The most significant pedogenic process, revealed by the petrographic microscope and SEM, was the formation of iron oxides from biotites, the formation of tubular halloysites and the weathering models of biotites; wedge weathering and layer weathering. The thick coating on the weathering biotites showed the characteristics of the weathering process and the synthetic hematites were revealed in clays by TEM. Total chemical analysis of clays revealed extensive loss of Ca, and Na and the concentration of Fe and Al. Mineralogical studies of clays by XRD showed that micas were almost completely weathered to kaolinite, vermiculite-kaolinite intergrade, hematite, gibbsite, while halloysites from other primary minerals. Some dioctahedral mica appeared to be resistant in the soils. Parent rock of the soils contained a considerable amounts of biotites and this forest soils showed especially a dominant characteristics of biotite weathering.

  • PDF

Classification of Weathering for the Granite and Granite Gneiss in Okcheon Belt-Jecheon${\cdot}$Geumsan${\cdot}$Gimcheon in Korea (옥천대지역 -제천${\cdot}$금산${\cdot}$김천 - 에 분포하는 화강암 및 화강 편마암의 풍화분류에 관한 고찰)

  • Woo, Ik;Park, Hyuk-Jin
    • Economic and Environmental Geology
    • /
    • v.37 no.3
    • /
    • pp.355-364
    • /
    • 2004
  • A study on the weathering grade classification has been performed for granite and granite gneiss in Korea. The qualitative classification criteria of weathering were reviewed and then modified with field studies for the weathered rock masses. The thin section observations and XRD analyses for the different weathering grades rock samples showed the petrographical and petrophysical difference with respect to the weathering : the proportion of weathering-resistant minerals suck at quartz and orthoclase has a tendency to increase with the development of weathering, but that of weathering-sensible minerals such as anorthite and biotite is decreased. The ranges of physical and mechanical rock properties for different weathering grades were obtained from the laboratory rock tests and field tests for the studied rocks. And then, along with $RDI_{sq}$(Fookes et al., 1988), the weathering index $I_{a}$, (Woo, 2003) has been developed in this study to demarcate the weathering grade. Those two indices rely mainly on the water absorption ratio of rock and on the different rock strength. The range of these weathering indices have been determined with the physical and mechanical rock properties that can be obtained from simple field or laboratory tests in 4 grades $I_{a}$> 7 for F, 3.5 < $I_{a}$ < 10 for SW, 1.0 $I_{a}$< 6.0 for MW and $I_{a}$< 2.5 for HW. Consequently, the weathering index could be utilized to classify quantitatively the rock weathering grade, especially for the studied granites and the granite gneiss in Korea.

Pseudotachylyte Developed in Granitic Gneiss around the Bulil Waterfall in the Jirisan, SE Korea: Its Occurrence and Characteristics (지리산 불일폭포 일원의 화강암질편마암에 발달한 슈도타킬라이트: 산상과 특성)

  • Kang, Hee-Cheol;Kim, Chang-Min;Han, Raehee;Ryoo, Chung-Ryul;Son, Moon;Lee, Sang-Won
    • The Journal of the Petrological Society of Korea
    • /
    • v.28 no.3
    • /
    • pp.157-169
    • /
    • 2019
  • Pseudotachylytes, produced by frictional heating during seismic slip, provide information that is critical to understanding the physics of earthquakes. We report the results of occurrence, structural characteristics, scanning electron microscopic observation and geochemical analysis of pseudotachylytes, which is presumed to have formed after the Late Cretaceous in outcrops of the Paleoproterozoic granitic gneiss on the Bulil waterfall of the Jirisan area, Yeongnam massif, Korea. Fault rocks, which are the products of brittle deformation under the same shear stress regime in the study area, are classified as pseudotachylyte and foliated cataclasite. The occurrences of pseudotachylyte identified on the basis of thickness and morphology are fault vein-type and injection vein-type pseudotachylyte. A number of fault vein-type pseudotachylytes occur as thin (as thick as 2 cm) layers generated on the fault plane, and are cutting general foliation and sheared foliation developed in granitic gneiss. Smaller injection vein-type pseudotachylytes are found along the fault vein-type pseudotachylytes, and appear in a variety of shapes based on field occurrence and vein geometry. At a first glance fault vein-type seudotachylyte looks like a mafic vein, but it has a chemical composition almost identical to the wall rock of granitic gneiss. Also, it has many subrounded clasts which consist predominantly of quartz, feldspar, biotite and secondary minerals including clay minerals, calcite and glassy materials. Embayed clasts, phenocryst with reaction rim, oxide droplets, amygdules, and flow structures are also observed. All of these evidences indicate the pseudotachylyte formed due to frictional melting of the wall rock minerals during fault slip related to strong seismic faulting events in the shallow depth of low temperature-low pressure. Further studies will be conducted to determine the age and mechanical aspect of the pseudotachylyte formation.

Resistivity Monitoring of Saturated Rock Cores at Room Temperature (수포화 암석코어의 상온 전기비저항 모니터링)

  • Lee, Sang Kyu;Lee, Tae Jong;Yi, Myeong-Jong
    • Geophysics and Geophysical Exploration
    • /
    • v.18 no.3
    • /
    • pp.105-114
    • /
    • 2015
  • A long-term resistivity monitoring system has been developed for saturated cores in room temperature and humidity condition. A 3-channel water-pump continuously drops the water onto the top of saturated core sample surrounded by shrinkable tube as well as on the paper filters of the electrodes at both sides of the core sample, by which one can monitor the resistivity changes with maintaining full saturation of the rock core for a week or longer. Monitoring the resistivity changes has been performed with 3 kinds of rock samples including biotite gneiss, andesitic tuff, and shale for 9 days using the system. Consequently, it is proposed two hypothesis that conversion speed of temperature coefficient has close relation to the thermal properties of the rock sample and that the ratio of resistance between dry and saturated conditions for a rock sample can be related to the effective porosity of the sample. The ratio between dry and saturated resistance for the three rock types are 48, 705, and 2, while effective porosity was 3.7%, 3.3%, and 13.0%, respectively.

Mineral Paragenesis and Fluid Inclusion Study of Ssangjeon Tungsten Deposits (쌍전중석광상(雙田重石鑛床)의 광물공생(鑛物共生)과 유체포유물연구(流體包有物硏究))

  • Youn, Seok Tai;Park, Hee-In
    • Economic and Environmental Geology
    • /
    • v.15 no.4
    • /
    • pp.221-233
    • /
    • 1982
  • Ssangjeon tungsten ore deposits is a complex pegmatite deposits embedded along the contact between pre-Cambrian Buncheon granite gneiss and amphibolite. This pegmatite vein developed 2 km along the strike and thickness varies from 10m to 40m. Mineral constituent of the normal pegmatite are quartz, microcline, plagioclase, muscovite, biotite, tourmaline and garnet. The vein paragenesis is complicated by repeated deposition of quartz but three distinct depositional stage can be recognized. Quartz A stage is the stage of the earliest milky white quartz deposition as a rock forming mineral of normal pegmatite. Quartz B stage is the stage of gray to dark gray quartz replace earlier formed normal pegmatite minerals. Quartz C stage is the stage of latest white translucent massive quartz replace quartz A and B. Tungsten ore minerals and other sulfide minerals were precipitated during quartz B stage. Ore minerals are ferberite and scheelite. Minor amount of molybdenite, arsenopyrite, pyrrhotite, pyrite, chalcopyrite, sphalerite, galena, pentlandite, bismuthinite, native bismuth and marcasite accompanied. Fluid inclusion in quartz A and B are gaseous inclusions and liquid inclusions are contained in quartz C as a primary inclusions. Salinity of inclusions in quartz A and B ranges from 4.5 to 9.5 wt. % and from 5.1 to 6.0 wt. % equivalent NaCl respectively. Homogenization temperature of quartz A; quartz B and quartz C ranges from 415 to $465^{\circ}C$, from 397 to $441^{\circ}C$ and from 278 to $357^{\circ}C$. $CO_2$ content of the ore fluid increased at the ends of quartz B stage.

  • PDF

The Study of Structural Control and Relative Photogeological Interpretation on Shiheung Mine Region (시흥군(始興郡) 서면일대(西面一帶)의 광화구제구조(鑛化規制構造)와 항공사진해석결과(航空寫眞解析結果)와의 비교연구(比較硏究))

  • Chi, Jeong Mahn;Ryuu, Byeoonghwa
    • Economic and Environmental Geology
    • /
    • v.3 no.4
    • /
    • pp.199-222
    • /
    • 1970
  • One of the biggest sulfide metallic (Cu, Pb, Zn) ore deposits of South Korea is located in the area of Seo-myeon, Shiheung-gun, Gyeonggi-do. Geology of the region is mostly composed of metasediments of biotite schist, graphite schist, injection gneiss, sericite schist, limesilicate and quartzite from bottom, those are applicable to so-called Yeoncheon System of Pre-Cambrian, and granodiorite, quartz porphyry, basic dykes are outcroped in a small scope as intrusives. The origin of the ore deposit is pyrometasomatic contact deposits due to hydrothermal replacement and the ore bodies are imbedded in lower bed of limesilicate formation as impregnation and ore minerals are galena, sphalerite, marmatite, chalcopyrite, bornite, chalcocite, covellite, and the later two minerals are both hypogene and supergene. Gangue minerals are mostly skarn minerals those hornblende, diopside, epidote, hedenbergite, chlorite, garnet and quartz except primary calcite and quartz. Boundary plane (NS strike) between schists and limesilicate seemed to be primary opening of ore solution and fractures bearing $N50^{\circ}{\sim}80^{\circ}W$ are secondary structural control for localization of ore minerals and the third structural controls are both irregular gashes and schistosity in small scale. Photogeological study was carried with vertical aerial photo scaled 1: 38,000 and enlarged 1 : 10,000 under stereoscope. The study on the area convinced the fact that the geologic boundaries between rocks, limesilicates and quartzites, are traced easily by their typical topographic feature and drainage, and the main fracture patterns which derived from the result of fracture traces, that photogeologic lineament observed under stereoscope, are those bearing (1) $N20^{\circ}W$, (2) $N58^{\circ}W$, (3) $N76^{\circ}W$, (4) EW, (5) $N20^{\circ}W$, (6) $N62^{\circ}W$, (7) $N77^{\circ}W$. Among the written fractures, (5) (not schistosity, in case of fault) (6) (7) are post-mineral faults and others are pre-mineral faults and others are pre-mineral structures, and (2) (3) (6) (7) are coincided with statistical figure of 208 fractures surveyed in underground. By the result of the study, mineralized zone, are presumed to extend north and southward, total length about 4km.

  • PDF

Characteristics of Groundwater Environment in Highly Enriched Areas of Natural Radionuclides (고함량 자연방사성물질 우려지역에 대한 지하수 환경 특성 연구)

  • Jeong, Do-Hwan;Eom, Ig-Chun;Yoon, Jeong-Ki;Kim, Moon-Su;Kim, Yeong-Kyoo;Kim, Tae-Seung
    • Journal of Soil and Groundwater Environment
    • /
    • v.15 no.6
    • /
    • pp.9-16
    • /
    • 2010
  • Groundwater sampling was performed at 38 wells where they are located in the areas with high uranium and radon (marked as A and B, respectively) concentrations, which were based on the previous research results. In-situ parameters (temperature, pH, EC, Eh, DO) and natural radionuclides (uranium and radon) were analyzed to figure out the characteristics of groundwater environments. In-situ data did not show any relations to natural radionuclide data, which could be caused by groundwater mixing, depths of wells, and geological settings, etc. But the highest radon well presented relatively low temperature value and the highest uranium well presented relatively low pH values The highest uranium concentration ranging $1.14{\sim}188.19{\mu}g/L$ showed in the area of A region consisted of Jurassic two-mica granite. The areas of Jurassic biotite granite and Cretaceous granite in the A region have the uranium concentrations ranging $0.10{\sim}49.78{\mu}g/L$ and $0.36{\sim}3.01{\mu}g/L$, respectively. The uranium values from between wells of community water systems (CWSs) penetrating fractured bed-rock aquifers and personal boreholes settled in shallow aquifers near the wells of CWSs show big differences. It implies that the groundwaters of the two areas have evolved from different water-rock interaction paths that may caused by various types of wells having different aquifers. High radon activities in the area of B region composed of Precambrian gneiss showed ranging from 6,770 to 64,688 pCi/L. Even though the wells are located in the same geological settings, their rodon concentration presented different according to depth and distance.

A study on basin structures in Yanggu and Hwacheon and their application to Geotoursim purposes (강원도 양구, 화천 일원의 분지 지형과 지오투어리즘 활용방안에 관한 연구)

  • PARK, Kyeong;KIM, Chang Hwan
    • Journal of The Geomorphological Association of Korea
    • /
    • v.19 no.4
    • /
    • pp.97-108
    • /
    • 2012
  • There exist plenty of geomorphological resources in Haean Basin, Yonghwasan Mt., and Gandong Basin in Eastern DMZ area in Gangwon Province which can be used as geotourism resources. Meticulous strategies are necessary to improve the geotourism bases in such a mountainous region. Potential geosites including Yongneup and Simjeog wetlands are nearby, so it is necessary to include these geosites when planning geotourism courses. The values of these sites coinciding with the goal of geopark are as follows: this region shows contrasting landforms derived from distinctive rocks such as gneiss and biotite granite, and there are many landforms derived from differential weathering of granite too. They can be used to explain the developmental history of numerous basin structures in entire Korean peninsula.