• Title/Summary/Keyword: biotite chemistry

Search Result 27, Processing Time 0.022 seconds

Crystal Chemistry of Ilmenite from the Hadong anorthosite Massif (하동 회장암체 내에서 산출하는 티탄철석의 결정화학)

  • 최진범;조현구
    • Journal of the Mineralogical Society of Korea
    • /
    • v.9 no.1
    • /
    • pp.43-53
    • /
    • 1996
  • The detailed crystal chemistry of ilmenite from the Hadong massif was studied by the EPMA, M ssbauer spectroscopy, and Rietveld structural refinement using X-ray powder diffraction data. The ilmenite-bearing anorthosite shows complicated mineral assemblage which consists of plagioclase, clinopyroxene, hornblende, biotite, chlorite, apatite, allanite, and zircon. Anorthite is andesine in composition (Ab 28-57), and clinopyroxene drops in ferro-hypersthene (Fs 62-70). Ilmenite is trigonal symmetry with R space group, whose structure shows the alternation of Fe2+ (M1 site) octahedral layer and Ti (M2 site) layer along c axis. M ssbauer spectroscopy indicates that there are three doubles which assigned to couple of Fe2+($\delta$=0.812, 0.890mm/sec) and one Fe3+($\delta$=0.303mm/sec) in octahedral sites. Their Fe3+/$\Sigma$Fe is 0.065 and chemical formula is established as Fe2+0.94Fe3+0.07Ti0.97O3 using both EPMA and M ssbauer analysis. Rietveld structural refinement reveals that site occupancies of Fe in M1 and Ti in M2 are 91.2% and 89.4%, respectively. This implies that Ti and Fe2+ are alternatively occupy M1 and M2 sites. In addition, smaller M2 site is more preferable to Fe3+ occupancy over M1.

  • PDF

Evolution Trends of Biotite and Hornblende in Granitic Rocks from Yonghae-Yongdok Area, Northeastern Gyeongsang Basin, Korea (경상분지(慶尙盆地) 북동부(北東部) 영해(盈海)·영덕일대(盈德一帶)의 화강암질암(花崗岩質岩)의 흑운모(黑雲母)와 각섬석(角閃石)의 진화경로(進化經路))

  • Lee, Yoon-Jong;Kim, Joong-Wook;Chung, Won-Woo
    • Economic and Environmental Geology
    • /
    • v.26 no.3
    • /
    • pp.349-361
    • /
    • 1993
  • The granitic rocks in the study area are divided into the schist and gneiss complex, Yongdok pluton, Yonghae pluton and Onjong pluton by their texture, fabric and relationship to the adjacent rocks in the field, Schist and gneiss complex occurs as xenolith or roof pendant in the Yongdok, Yonghae and Onjong plutons. The Yongdok pluton occurs in association with pegmatite and aplite in many places of its pluton. In the field it is obviously clarified that the Yongdok pluton is unconformably overlay by the Cretaceous sedimentary rocks. The Yonghae and Onjong plutons are gradationally changed each other, and these plutons truncate both the Yongdok pluton and the Cretaceous sedimentary rocks. Petrographically, the Yongdok pluton consists of granodiorite and granite with minor quartz monzonite. The Yonghae pluton is composed of diorite, quartz diorite, tonalite, and granodiorite. The Onjong pluton also ranges granodiorite to granite. Both the Yongdok and Yonghae-Onjong plutons are different in the constituent minerals, such as alkali feld~par, myrmekite, mica, sphene and mafic minerals. This suggests that each pluton might have been different crystallization sequence and characteristically different gological history during the crystallization period. Iron/magnesium ratio in biotite and hornblende from both the Yongdok and Yonghae-Onjong plutons gradually decrease as the differentiation index increasing in the whole rock. The decrease of this ratio strongly depend on the increase of opaque mineral contents. From the results of chemistry in the whole rocks and some mafic minerals, it is suggest that the granite plutons of the two different geological ages would have been suffered the environment of high oxygen fugacity in the process of magmatic emplacement and during the crystallization period.

  • PDF

Nd and Sr Isotopes and K-Ar Ages of the Granitic and Rhyolitic Rocks from the Bupyeong Silver Mine Area (부평 은광산 지역의 유문암질암의 화강암류의 K-Ar연령과 Nd, Sr 동위원소)

  • Kim, Kyu Han;Tanaka, Tsuyoshi;Nagao, Keisuke
    • Economic and Environmental Geology
    • /
    • v.31 no.2
    • /
    • pp.149-158
    • /
    • 1998
  • Volcanic rocks including rhyolitic tuff, rhyolite and welded tuff in the Bupyeong silver mine area form a topographic circular structure known as a resurgent caldera. Granitic rocks are emplaced inside and outside area of the circular structure. K-Ar dating and Nd-Sr isotope studies were carried out to invesitigate the origin and petrogenetic evolution of the rhyolitic and granitic magma in the Bupeong silver mine area. Whole rock K-Ar age ranges from 208 to 131 Ma for rhyolitic rocks. Radiometric ages for the granitic rocks are 167.6 Ma for pink feldspar biotite granite from inside granitic pluton of the circular volcanic body, 178.8 Ma for the Kimpo hornblende biotite granite and 111.8 Ma for the Songdo foliated granite from outside granitic plutons of the volcanic body. The radiometric age data indicates that the volcanic activities which are partly overlapped by granite plutonic activities in the Bupyeong mine area had recorded early Jurassic and early Cretaceous in age. Initial Sr and Nd isotopic ratios of the rhyolitic rocks ($^{87}Sr/^{86}Sr$=0.710~0.719 and $^{143}Nd/^{144}Nd$=0.5115~0.5118) are similar to those of granitic rocks ($^{87}Sr/^{86}Sr$=0.709~0.716 and $^{143}Nd/^{144}Nd$=0.5115~0.5116) from inside granite stock. This means that similar source materials of felsic magma responsibles for the Bupyeong volcanic rocks and inside plutonic rocks. Based on the Nd and Sr isotopic compositions, rhyolitic and granitic magmas in the Bupyeong area originated from the partial melting of the old continental crust which has Nd model age ranging from 1500 to 2900 Ma. This is analogous to those of the other Jurassic granitoids in South Korea.

  • PDF

Alteration Textures and Mineral Chemistry of Margarite from Miwon Area, Chungcheongbukdo (충북미원지역에서 산출하는 마카라이트의 변질양상 및 광물화학)

  • 이승준;안중호;김현철;조문섭
    • Journal of the Mineralogical Society of Korea
    • /
    • v.15 no.1
    • /
    • pp.69-77
    • /
    • 2002
  • Margarite, which occurs in the Unkyori Formation of Miwon area, Chungcheongbukdo, South Korea, was investigated using the petrographic microscope, back-scattered electron images (BSEI), and electron probe microanalyzer (EPMA) to characterize the alteration textures and mineral chemistries. Most margarite crystals are inhomogeneous, and chlorite was commonly observed to occur at the boundaries parallel to the rim of margarite. Cracks occur across the basal plane of the margarite, and margarite is partly replaced by chlorite along the cracks. In additon, muscovite and biotite are intergrown in margarite and chlorite crystals, suggesting that margarite was partially altered to chlorite as well as to muscovite and biotite. Chemical analysis data show that paragonite solid solution in the margarite is approximately 19.6 mol%, but clintonite solid solution is negligible. Margarite crystals in the Unkyori Formation cut or penetrate other metamorphic minerals In the same thin sections and are oriented randomly without any relationship with the foliation of host rocks, indicating that formed as a secondary mineral after peak metamorphism. Furthermore, it seems that hydrothermal fluids associated with the Mesozoic intrusions developed near the sample are closely related to the margarite formation.

Hydrochemistry and Occurrence of Natural Radioactive Materials within Borehole Groundwater in the Cheongwon Area (청원지역 시추공 지하수의 수리화학 및 자연방사성물질 산출 특성)

  • Jeong, Chan-Ho;Kim, Moon-Su;Lee, Young-Joon;Han, Jin-Seok;Jang, Hyo-Geun;Jo, Byung-Uk
    • The Journal of Engineering Geology
    • /
    • v.21 no.2
    • /
    • pp.163-178
    • /
    • 2011
  • A test borehole was drilled in the Cheongwon area to investigate the relationship between geochemical environment and the natural occurrence of radioactive materials (uranium and Rn-222) in borehole groundwater. The borehole encountered mainly biotite schist and biotite granite, with minor porphyritic granite and basic dykes. Six groundwater samples were collected at different depths in the borehole using the double-packed system. The groundwater pH ranges from 5.66 to 8.34, and the chemical type of the groundwater is Ca-$HCO_3$. The contents of uranium and Rn-222 in the groundwater are 0.03-683 ppb and 1,290-7,600 pCi/L, respectively. The contents of uranium and thorium in the rocks within the borehole are 0.51-23.4 ppm and 0.89-62.6 ppm, respectively. Microscope observations of the rock core and analyses by electron probe microanalyzer (EPMA) show that most of the radioactive elements occur in the biotite schist, within accessory minerals such as monazite and limenite in biotite, and in feldspar and quartz. The high uranium content of groundwater at depths of -50 to -70 m is due to groundwater chemistry (weakly alkaline pH, an oxidizing environment, and high concentrations of bicarbonate). The origin of Rn-222 could be determined by analyzing noble gas isotopes (e.g., $^3He/^4He$ and $^4He/^{20}Ne$).

Wall-rock Alteration Relating to Tungsten-Tin-Copper Mineralization at the Ohtani Mine, Japan (대곡(大谷) W-Sn-Cu 광상(鑛床)의 열수변질작용(熱水變質作用))

  • Kim, Moon Young
    • Economic and Environmental Geology
    • /
    • v.21 no.3
    • /
    • pp.209-221
    • /
    • 1988
  • The ore deposit of the Ohtani mine is one of repesentatives of plutonic tungsten-tin veins related genetically to acidic magmatism of Late Cretaceous in the Inner zone of Southwest Japan. Based on macrostructures of vein filling on the order of ore body, three major mineralization stages, called stage I, stage II, and stage ill from earliest to latest, are distinguished by major tectonic breaks. The alteration zories are characterized by specific mineral associations in pseudomorphs after biotite. The alteration zones can be divided into two parts, i. e. a chlorite zone and a muscovite zone, each repesenting mineralogical and chemical changes produced by the hydrothermal alteration. The chloritic alteration took place at the beginning of mineralization, and muscovite alteration in additions to chloritic alteration took place at stage II and ill. The alteration zones are considered to be formed by either of two alteration mechanism. 1) The zones are formed by reaction of the rock with successive flows of solution of different composition and different stage. 2) The zones are formed contemporaneously as the solution move outward. Reaction between the solution and the wall-rock results in a continuous change in solution chemistry. The migration of the successive replacement of the fresh zone$\rightarrow$the chlorite zone$\rightarrow$the muscovite zone may have transgressed slowly veinward, leaving metasomatic borders between the different zones.

  • PDF

Compositional and Microstructural Study of Punchong from Hakbongni, Kongju (공주 학봉리 분청에 대한 성분과 미세구조의 분석)

  • Lee, Young Eun;Koh, Kyongshin
    • Journal of Conservation Science
    • /
    • v.6 no.1 s.7
    • /
    • pp.3-14
    • /
    • 1997
  • Twelve Punchong sherds collected in Hakbongni, Kongju where the well known iron-painted on white slip were manufactured from late 15C to early 16C were analyzed for their composition and microstructure. The composition of the body was analyzed by X-ray fluorescence and that of glaze by electron probe micro-analyzer. Microstructure was observed by optical microscope, polarizing microscope, EPMA, and X-ray diffractometer. The results of composition of body and glaze of Hakbongni were compared with those of Punchong from Yongsuri, Boryong which was close to Hakbongni. The composition of body and glaze of these two areas were compared by principal component analysis using SPSS program. Hakbongni bodies have higher silica and flux materials but lower alumina and their glaze have higher silica, soda, iron oxide but lower alumina, calcia. Hakbongni punchong itself is divided into two groups. Their glaze is lime type. There are many remnant minerals, such as quartz, large feldspar mass with partially melted surrounding area, albite, biotite, and iron-oxide. From such a microstructure we can assume that preparation of raw material was rather crude and firing temperature quite low. Iron-painted material is identified as Mg/Fe/Al spinel by composition analysis and XRD pattern.

  • PDF

Mineralogical Characteristics of the Granitic Rocks in the Southeastern Gyeongsang Basin (경상분지 남동부에 분포하는 화강암질암의 광물학적 특징)

  • Hwang Byoung-Hoon;Lee Joon-Dong;Yang Kyounghee;Ock Soo-Seok
    • Journal of the Mineralogical Society of Korea
    • /
    • v.17 no.4
    • /
    • pp.365-383
    • /
    • 2004
  • Granitic rocks in the southeastern Gyeongsang Basin can be classified into three groups. The group I contains various mafic microgranular enclave (MME) and/or mafic clot which implies magma mixing or mingling. The group II show the feature of shallow depth emplacement at low pressure, and the group III is characterized by A-type granite implying extensional tectonic environment. Mineralogical characteristics of the granitic rocks have showed systematic variations in perthite exsolution temperatures and biotite compositions according to their rock facies, although they do not show any distinctively different trend in geography and textures or rock facies. Amphiboles from Group I are calcic-amphibole and they were formed at 0.4 ~ 2.8 kb in pressure based on the amphibole geobarometry. Amphiboles from group ill are riebeckite, whileas amphiboles were not observed in Group II. The chemical composition of biotite defined in clusters showing a continuous spectrum between group I to ferric-annite of group ill. The composition of plagioclase generally plotted in albite, oligoclase, and andesine area without any distinctive differences among their geography or rock facies. The exsolution temperatures by perthite geothermometry are calculated as $300~400^{\circ}C$ in Group I, and 500~$600^{\circ}C$ in equigranular granite of group II and alkali-feldspar granite of group III.

Mineral Chemistry and K.Ar Age of the Daeyou Pegmatite Deposit (대유 페그마이트광상의 광물조성과 K-Ar 연대)

  • 신흥자
    • Economic and Environmental Geology
    • /
    • v.32 no.3
    • /
    • pp.227-236
    • /
    • 1999
  • The Daeyou pegmatite is located at the central westerm part of the peninsula. Geology of the mine area consists mainy of pre-Combrian granite gneiss and leucoratic gneiss which are intruded by Mesozoic granites. The pegmatite deposits occur within granite gneiss. Most of pegmatites contain quartz, perthite, microcline-perthite, microcline, sodic plagioclase and tourmaline as dominant minerals with accessory minerals of mica (muscovite, biotite, sericite)and pyrite. Tourmaline occurs as four types: 1) unaltered single crystals, 2) patially sericitized grains bordered by sericite assemblage, 3) tourmaline intergrown with feldspar and qurtz grains, and 4) tourmaline introduced veinlet/ On the basic of optical, X-ray diffraction and chemical analysis, the composition of tourmaline mostly falls on the schorl-elbaite join, in the composition of tourmaline mostly falls on the schorl-elbraite join, in the composition of schorl end member from 0 to about 50%. In spite of the different occurrences, chemical composition of tourmaline shows the limited ranges as follows: $SiO_{2}$ (34.53~35.01 wt.%), $Al_{2}O_{3}$ (33.58~34.26wt.%), FeO (13.73~14.17wt.%), $Na_{2}O$ (1.60~1.72wt.%), MgO (0.56~0.72wt.%), MnO (0.12~0.18wt.%), CaO (0.02~0.06wt.%), $K_{2}O$(0.02~0.03wt.%) $TiO_{2}$ (0.02~0.05wt.%) and $Cr_{2}O_{3}$ (0.02~0.03wt.%). K-Ar ages of the muscovite and sericite fall between 1010$\pm$15 and 1074$\pm$16Ma and between 161.56$\pm$3.09 and 161.67$\pm$Ma, respectivrly. This means that hydrothrmal alteration occurred during middle Jurassic, whereas the pegmatite was initally formed during the late proterozoic age.

  • PDF

Petrology and Geochemistry of Dokdo Valcanic Rocks, East Sea (독도 화산암류의 암석학적 특성과 지구화학)

  • Lee, Jong-Ik;Hur, Soon-Do;Lee, Mi-Jung;Yoo, Chan-Min;Park, Byong-Kwon;Kim, Yea-Dong;Kwon, Moon-Sang;Nagao, Keisuke
    • Ocean and Polar Research
    • /
    • v.24 no.4
    • /
    • pp.465-482
    • /
    • 2002
  • Petrological, geochemical, and geochronological studies of Dokdo volcanic rocks, East Sea, have been carried out to understand their petrogenesis. Dokdo volcanic activity is divided into three stages according to occurrences and eruption ages of rocks. The second-stage activity is accompanied by large volume of pyroclastics and lavas of intermediate composition, and occupies most of the East and West islets. K-Ar biotite and whole-rock ages indicate that Dokdo volcanic activity occurred during late Pliocene and became systematically younger toward later stages: namely, 2.7-2.4 Ma for the first-stage trachyte, 2.4-2.3Ma for the second-stage trachyandesite and 2.2-2.1 Ma for the last-stage trachyte and dikes. Dokdo volcanic rocks are of intermediate to felsic compostions, and have OIB-like alkaline nature. The geochemical similarities between Dokdo and Ulleungdo volcanic rocks suggest that they were formed from the same mantle plume. However, considering the difference of eruption ages between Dokdo (2.7-2.1 Ma) and Ulleungdo (1.4-0.01 Ma) volcanic rocks, the former seems to have been formed by earlier hot spot activity.