• Title/Summary/Keyword: biotite

Search Result 512, Processing Time 0.025 seconds

Petrological Study on the Jecheon granite mass (제천(提川) 화강암체(花崗岩體)에 대(對)한 암석학적(岩石學的) 연구(硏究))

  • Kim, Yong Jun
    • Economic and Environmental Geology
    • /
    • v.12 no.3
    • /
    • pp.115-126
    • /
    • 1979
  • The Jecheon granite mass has turtle-shape exposure of about $190km^2$ at vicinity of Jecheon-eup, and is elongated in the direction of NEE-SWW. It discordantly intrudes the Bakdalryong metamorphic rocks and the great limestone series(Samtaesan and Hungwolri formation) which belong to the pre-Cambrian and Ordovician, respectively. The mass is composed of five facies of different grain size; texture and charecteristic minerals. The five facies are (1) coarse grained biotite granodiorite, (2) fine grained hornblende biotite granodiorite, (3) coarse grained pink feldspar granodiorite (4) leucogranite, and (5) porphyritic biotite granite. The mutual relationship between each facies is intrusion in (1)-(2) and (2)-(3), but unknown in (3)-(4) and (4)-(5). 22 modal analyses and and 10 chemical analyses on more than a hundred of representative samples taken from the mass are listed as tables. Triangular plot of modal and normative Q-Kf-Pl of this mass show a continuous differentiation products from certain common magma by change of chemical composition and anorthite contents in plagioclase. The metamorphic facies of contact aureole in surrounding rocks adjacent to the granite body are corresponded to hornblende hornfels facies with mineral assemblages of wollastonite-diopside-calcite in calcareous rocks, and of quartz-biotite-muscovite-cordierite in argillaceous rocks. Variation of silica versus oxides of major elements shows that the mass is similar to the trend of Daly's average basalt-andesite-dacite-rhyolite which shows the trend of the fractional crystallization of magma, and is equivalent to the calc-alkali rock series by Peacock. AMF diagram shows that Jecheon granite mass is equivalent to normal diffentiation products such as skaergaard intrusion. The above evidences suggest that the Jecohon granite mass is normal differentiation products formed by fractional crystallization under relatively slow cooling condition.

  • PDF

Intrusive Phases and Igneous Pricesses in the Yeongju Batholith (영주저반의 관입상과 화성과정)

  • 황상구
    • Economic and Environmental Geology
    • /
    • v.32 no.6
    • /
    • pp.669-688
    • /
    • 1999
  • The Yeongju granitoid batholith is a plutonic complex of huge area (1180km2) intruding the metamorphic rocks of the Yeongnam massif. The batholith, which is divided into fivelithofacies, consists of three separate plutons. The oldest Buseok pluton comprises four lithofacies: hornblende biotite tonalite, porphyrotoc biotite granodiorite, equigranular biotite grandiorite and biotite granite. The middle Chunyang pluton has been called as Chunyang granite that ranges in compostion from granodiorite to granite. The youngest Jangsu pluton is intrusions that has lithofacies of two mica granite. The contact between Buseok pluton and the rest two plutons shows obvious intrusive relations, but relation between the Chunyang and the Jangsu pluton is far away, so gives no indication of relative ages. Changes in nextures and micristructures, as well as in the mineral contents, take place between rock types og the plutons. only the Buseok pluton shows faliations of two type: magmatic foliation and regional mylonal foliation. K-Ar age deteminations fall into 171.7$\pm$3.2~162.3$\pm$3.1 Ma in the Buseok pluton, 153.9$\pm$2.9 Ma in the Chunyang pluton and 145.3$\pm$2.7 Ma in the jangsu Pluton. The batholith presents three separate intrusive phases which range in composition from tonalite to granite to granite. Each intrusive phase apperars to have been intruded in a pulse from an underlying, differentiating magma. The petrochemical data showthat three plutons are within the diagnostic range for continental arc orogenic tectonic setting, whereas Jangsu pluton approaches postorogenic setting. The data suggest that three plutons are calc-aclkalline series, and that temporal compositional variations change progerssively from tonalite through grandiorite to granite between the intrusive phases. so we consider that the magmas for all the phases were probably derived from a differentiation by fractional crystallization of a parental magma. The tonalite magma of the Buseok phase was tapped was tapped from a chamber deep in the crust, and then would have to rise at a rapid rate to its final level of emplacement. The tonalite magma in the chamber was gradually enolved through granodiorite magma into granite magma by fractional crystallization. The magmas of the younger phases were respectively tapped with temporal interval from a evolved magma of the chamber that rose into a shallower lever in the crust, and rose to their present level of emplacement.

  • PDF

Petrology and geochemistry of the Seoul granitic batholith (서울 화강암질 저반의 암석학 및 지구화학)

  • Kwon, S.T.;Cho, D.L.;Lan, C.Y.;Shin, K.B.;Lee, T.;Mertzman, S.A.
    • The Journal of the Petrological Society of Korea
    • /
    • v.3 no.2
    • /
    • pp.109-127
    • /
    • 1994
  • We report field relationship, petrography and major and trace element chemistry for the central part of the Seoul granitic bathlith of Jurassic age occurring in the Kyonggi massif. The batholith consists mainly of biotite granite (BG) and garnet biotite granite (GBG) with minor tonalite-quartz diorite and biotite granodiorite with or without hornblende. The mode data, along with the those reported by Hong (1984) for the biotite granite (south-BG) in the southern part of the batholith, indicate that the many of BGs and majority of GBG and south-BG are leucocratic. Major element data indicate that these predominant rocks of the batholith are peraluminous. Variation trends in Harker diagrams for the major and trace elements suggest that the BG and GBG are not related by a simple crystal fractionation process. The same is true between the central (BG and GBG) and the southern (south-BG) parts of the batholith, suggesting that the central and southern parts of the Seoul batholith may consist of three separate intrusions. Tectonic discriminations using major and trace element data and the age of emplacement suggest that the batholith represents Jurassic plutonism related to an orogeny, perhaps to a subduction-related continental magmatic arc.

  • PDF

Petrochemical Study on the Cretaceous Granitic Rocks in the Southern Area of Hambaeg Basin (함백분지(咸白盆地) 남부지역(南部地域)에 분포(分布)하는 백악기(白堊紀) 화강암질암류(花崗岩質岩流)의 암석화학적(岩石化學的) 연구(硏究))

  • Yun, Hyun Soo
    • Economic and Environmental Geology
    • /
    • v.19 no.spc
    • /
    • pp.175-191
    • /
    • 1986
  • The Geodo granodiorite intruded into the Joseon Supergroup is fine-grained at the marginal part, and medium-grained and more leucocratic at the central part. The Quartz monzonite porphyry intruded inte Precambrian granite and Geodo granodiorite has abundant plagioclase phenocryst. The Imog granite intruded into the Yulri Group and the Joseon Supergroup is mediumgrained biotite granite with partly pinkish feldspar phenocryst. The K/Ar ages obtained from the biotite of the Geodo granodiorite and Imog granite are Early ($111{\pm}1{\sim}107{\pm}1$ Ma) and Late ($93{\pm}1{\sim}92{\pm}1$ Ma) Cretaceous, respectively. The K/Ar sericite age of the quartz-sericite zone of the lower Jangsan quartzite occuring in the western area gave much younger age (about 170 Ma) than that of the Jangsan quartzite, that might be reset due to the regional metamorphism of the Daebo orogeny. The granitic rocks of the area are felsic to mafic, metaluminous to peraluminous, calc-alkalic (alkali-lime index${\fallingdotseq}$ 57) and I-type (magnetite-series) based on the chemical data_ And they appear to have been fractionated at the order of Geodo granodiorite, Quartz monzonite porphyry and Imog granite. In terms of mineralogy, geochemistry and K/Ar biotite age, a rock suite of monzodiorite, quartz monzodiorite and quartz monzonite-granodiorite in the Geodo stock was fractionally differentiated from a magmatic body from its margin to inward.

  • PDF

Mineralogical Chemistry of Granitoids and Pegmatites in the Sangdong and the UIchin Areas (상동 및 울진지역 화강암질암과 페그마타이트의 광물화학)

  • Chon, Hyo-Taek;Son, Chang-Il
    • Economic and Environmental Geology
    • /
    • v.28 no.1
    • /
    • pp.33-41
    • /
    • 1995
  • Tin mineralizations in South Korea have been found only in the Ulchin and the Sangdong areas. The Wangpiri and the Yuchang Sn pegmatites appear to be in close spatial and genetical relation to the Wangpiri granitoid in the Ulchin area, and the Soonkyeong Sn pegmatite be in close association with the Nonggeori granites in the Sangdong area from geochemical viewpoint. The electron-microprobe analysis of muscovite, biotite, tourmaline and cassiterite from the granitoids and pegmatites in the Ulchin and the Sangdong areas has revealed a distinct differences of geochemical compositions. The Wangpiri and the Yuchang Sn pegmatites show an enrichment of MnO and a depletion of $TiO_2$, FeO and MgO in comparison with the Soonkyeong Sn pegmatite. This result coincides with the geochemical compositions of granitoid rocks in these areas. Enrichment of MnO and depletion of $TiO_2$ FeO and MgO are characteristic in muscovite, biotite and tourmaline of pegmatites compared with those of granitoids. These geochemical differences of muscovite, biotite and tourmaline between granitoids and pegmatites in these areas implies that pegmatites are more fractionated than granitoids.

  • PDF

Characteristics of Stone - monuments and geological studies on the rocks( II ) -Gangneung-city, Myeongju-gun, Yangyang-gun and Sogcho-city- (석조문화재 보존에 관한 지질학적 연구 -강릉시, 속초시, 명주군, 양양군을 중심으로 -)

  • LEE, S. H.;PARK, K. R.
    • Journal of Conservation Science
    • /
    • v.2 no.2 s.2
    • /
    • pp.31-62
    • /
    • 1993
  • Stone -monuments, distributed in this area, have been investigated and studied in geological and conservational points of view. They are seemed to have been mainly built from the Shilla to Koryeo Kingdom, although more systematic studies are needed. The used rocks in these monuments are mainly biotite granite and hornblende-biotite granite of Jurassic age. The rock phases are nearly identical to those which are distributed in the area. The two rock phases are nearly same in the characteristics of minevalogy and texture except the amount of hornblende. However, hornblende-biotite granite characteristically contains aggregates of mafic minerals which are frequently observable in the monuments. They are mainly influenced by chemical weathering due to warm, abundant rainfall, and salty moisture because of being adjacent to the sea. Some cracks are secondarily developed which may be due to strong chemical weathering and influence of sculpturing. For conservation, it must be scientifically considered based on characteristics and kind of rock phase, factors on weathering process, situation and protection.

  • PDF

K-Ar biotite ages of pelitic schists in the Jeungpyeong-Deokpyeong area, central Ogcheon metamorphic belt, Korea (증평-덕평 지역 중부 옥천변성대에 분포하는 이질 편암의 K-Ar 흑운모 연대)

  • 조문섭;김인준;김현철;민경원;안중호;장미경개
    • The Journal of the Petrological Society of Korea
    • /
    • v.4 no.2
    • /
    • pp.178-184
    • /
    • 1995
  • The K-Ar ages of biotites, obtained from thirteen pelitic schists in the Jeungpyeong-Deokpyeong area, central Ogcheon metamorphic belt, range from 89 Ma to 213 Ma except for one specimen. These K-Ar ages systematically decrease as the distance between the analyzed specimen and the Jurassic or Creataceous granite decreases. The K-Ar ages of b~otites adjacent to the Jurassic and Cretaceous granites are 166 Ma and 89 Ma, respectively. Thus, the biotite ages are interpreted to result from the partial or complete resetting by thermal activities in association with the intrusion of Mesozoic granites, following the regional-thermal metamorphism at Late Triassic to Early Jurassic times.

  • PDF

Assessment of Deformation Modulus in Gneiss for Road Tunnel (도로터널에서 편마암 구간의 암반변형계수 산정 연구)

  • Kim, Nag-Young;Kim, Sung-Hwan;Chung, Hyung-Sik
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.3 no.1
    • /
    • pp.27-35
    • /
    • 2001
  • Four road tunnels, which consists of biotite gneiss and granite gneiss and shows a similar geological conditions, were selected in this study. Laboratory and field tests, the rock mass rating for the four tunnels were conducted. A regression analysis was performed to find out the correlations of test results. It was proposed an equation of reduction factor which can assess the deformation modulus for biotite gneiss and granite gneiss. It was also found that there was a close correlation between Q and RQD in four tunnels according to the analysis between RMR and Q, RMR and RQD, Q and RQD and laboratory and field tests.

  • PDF

Geological Study on the Rocks of the Stone-Monuments-at the around the weonju City, Weonju-gun, Hwoengseong-gun and Hongcheon-gun (석조문화재의 암석에 관한 지질학적 조사 연구 (I)-원주시, 원주군, 횡성군 및 홍천군 지역을 중심으로)

  • Lee, Sang-Hun
    • 보존과학연구
    • /
    • s.13
    • /
    • pp.14-36
    • /
    • 1992
  • The investigation has been made on the rocks consisting the pagoda(12), Buddhist Statues(9) Buldaejwa and cakra(2, rewpectively), stele(5), and Flagpole wupport and stupa(6) which are stood in Weonju city, Weonju-gun, Hwoengseong-gun and Hongcheon-gun, Kangweondo. These rock-monuments range mostly in age from late Shilla Kingdom to middle Korye Kingdom. The geology around this region is mainly composed of Precambrian metamorphic rocks and mesozoic granitic rocks. The granitic rocks are largely divided into Jurassic and cretaceous ones which are slightly different in rock phase. The main rock phase consisting the monumentsare are coarse biotite granite with minor amount of hornblende in Jurassic age. Variation in rock phase is abserved even in part of the stone used in the monuments. Inclusions composed of biotite and hornblende, porphyritic texture with microcline phenocryst, igneous lineation and exfoliation according to weathering are observable in all rocks in these monuments. In the case of stele whose a body and a capstone is remained, one is composed of black slate and the other white limestone. But the turtle shaped pedestal is constituted of coarse biotite granite. These stone-monuments are strongly weathered and exfoliated out about 1∼2mm.In case of exfoliated weathering along igneous lineation, some are taken off about 3∼5mm thick. In some monuments, the degree of weathering is somewhat different according to position, grade of sculpture, and biological activity.

  • PDF

Mineral Compositions of Granitic Rocks in the Yeongkwang-Naju Area (영광-나주지역에 분포하는 화강암류의 광물성분에 대한 연구)

  • Park, Jae-Bong;Kim, Yong-Jun
    • Economic and Environmental Geology
    • /
    • v.45 no.5
    • /
    • pp.535-549
    • /
    • 2012
  • Main aspect of this study are to clarify mineral compositions on granites in Youngkwang-Naju area. These granites are is divided into four rock facies based on the geologic ages, mineralogical composition and chemical constituents, and texture : hornblende-biotite granodiorite, biotite granite, porphyritic granite and two mica granite. These granites constitude an igneous complex formed by a series of differentiation from cogenetic magma. In compressive stress field between the Ogcheon folded belt and the Youngnam massif, the foliated and undeformed granites had formed owing to heterogeneous distribution of stress. The geochemical data of study area indicate magma of these rocks would had been generated by melting in lower and middle crust. The major minerals of granitic rocks in study area are plagioclase, biotite, muscovite and hornblende. Plagioclase range in composition from oligoclase ($An_{19.3-27.7}$) to andesine ($An_{28.4-31}$), and shows normal zoning patterns, This uniformed composition indicated slow crystallization, and it is obvious that the growth of these crystal occurred before final consolidation of the magma. The Mg content of biotite are increases with increasing of $f_{O2}$ and grade of differentiation, changing from phlogopite to siderophyllite. Its $Al^{iv}$/$Al^{total}$ ratios are propertional to bulk rock alumina content. Muscovite is primary in origin with high content of $TiO_2$, and Its composition correspond to celadonitic muscovite. Hornblende indicated calc amphibole group ($(Ca+Na)_{M4}{\geq}1.43$, $Na_{M4}<0.67$). and consolidation pressure of granitic body by geobarometer of Hammerstrume and Zen show 11.3~17.2 Km.