• Title/Summary/Keyword: bioreactors

Search Result 193, Processing Time 0.023 seconds

Applicability of low pressure membranes for wastewater treatment with cost study analyses

  • Maddah, Hisham A.;Chogle, Aman M.
    • Membrane and Water Treatment
    • /
    • v.6 no.6
    • /
    • pp.477-488
    • /
    • 2015
  • This study demonstrates that low pressure membranes are the ideal choice for industrial and/or municipal wastewater treatment by showing some promising experimental results, understanding different membrane filtration models, studying the potential of membrane bioreactors (MBRs), considering ceramic membranes fabrication and illustrating the role of nanotechnology in membranes. Cost study calculations are included to determine the treatment cost as well as the initial cost of various membrane types. Results showed that integrated membranes are preferred over MBR in case of average capacities. However, higher capacity situations are the most economical choice for MBR. It is shown that the least treatment cost in MBR was about $0.13/m^3$. However, the $0.13/m^3$ is the theoretical cost which is very small compared to the actual average MBR treatment cost of $0.5/m^3$.

Development of Bioreactors for Hydrogen-Producing Immobilized Photosynthetic Bacteria(I) : Evaluation of lmmobilized CSTR for Hydrogen Productivity and Effectiveness Factor (광합성 박테리아를 이용한 고성능 수소 생산 고정화 생물반응기의 개발(I) 고정화 연속 교반탱크 반응기에서의 수소 생산성 및 효율인자 평가)

  • 선용호;한정우
    • KSBB Journal
    • /
    • v.8 no.3
    • /
    • pp.243-255
    • /
    • 1993
  • In this study, it was observed that hydrogen Productivity varied with stirrer speed, bead radius, input glucose concentration and dilution rate in a continuous stirred tank reactor in which immobilized R. rubrum KS-301 was used as a hydrogen-producing bacterium The mass transfer resistance due to cell immobilization was also studied. In order to estimate an effectiveness factor, Des of glucose was first obtained, which was subsequently represented by the correlation equation between Dos and Xb, As a result external mass transfer resistance could be neglected for stirrer speeds greater than 400rpn With bead radius increasing, the hydrogen productivity and internal effectiveness factor decreased. With input 91ucose concentration increasing, the hydrogen productivity and interval and external effectiveness factor increased. Although an Internal effectiveness factor was not affected, hydrogen productivity Increased with dilution rate increasing. An overall effectiveness factor remained nearly constant for the dilution rates investigate4 but increased with input 91ucose concentration increasing.

  • PDF

Characteristics of $\beta$-glucosidase Immobilized on the Diazotized Chitin in Bioreactors (Diazotized Chitin에 고정된 $\beta$-glucosidase의 생물 반응기에서의 동특성)

  • 김종덕;이경희송승구
    • KSBB Journal
    • /
    • v.6 no.2
    • /
    • pp.147-156
    • /
    • 1991
  • Diazotized chitin (CHITN) was synthesized reacting with NaN3 and HCl to alkaline hydrolyzed chitin for the support of immobilized enzyme. Immobilized $\beta$-glucosidase on diazotized chitin(CHITN-Gase) was produced reacting with glutaraldehyds as bifunctional reagent. CHITN-Gase activities were determined reacting with p-nitrophenol-$\beta$-D-glucopyranoside in plug flow reactor as a reference. Optimum temperature, optimum pH, reaction constant and deactivation rate were determined with variation of flow rate and H/D. The particle size of immobilized enzyme in the best was, 35 mesh (CHITN35-Gase). The optimum conditions of immobilized enzyme were $70^{\circ}C$ in temperature and 5.0 in pH. Diameter and flow rate of plug flow reactor in the best was 8.5mm in diameter and 0.8ml/min in flow rate. Reaction constant was mainly influenced by electrostatic force. The best glucose hydrolizing activities of CHITN3 5-Gase was 3.34$\times$10-5 M/1. while that of native-$\beta$-glucosidase was 2.44$\times$10-5 M/1.

  • PDF

Enzymatic Production of Cyclodextrin Homologues Using Membrane Bioreactors (막 생물반응기를 이용한 Cyclodextrin 동족체의 효소적 생산)

  • 홍준기;염경호
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1998.10a
    • /
    • pp.82-85
    • /
    • 1998
  • 1. 서론 : Cyclodextrin(CD) 동족체(homologues)는 $\alpha$-, $\beta$-, $\gamma$-CD로 구분되며, 이들 각각은 $\alpha$-D-glucopyranose 단위체 6,7, 및 8개가 비환원성 환상구조로 연결된 cyclic maltooligosaccaride의 일종으로 외부는 친수성이고, 내부는 소수성인 공동 구조를 갖고 있다. 따라서 각 CD는 동공의 크기가 달라 다른 크기의 소수성 물질들과 선택적인 포접화합물 (inclusion compound)을 형성하는 특징이 있다. CD 동족체는 전분 분해 효소인 cyclodextrin glycosyltransferase(CGTase)에 의해 전분으로부터 생산되는데, 반응용액 내에서의 CD 동족체 농도가 어느 한계값 이상으로 높아지면 생산물 저해와 다른 환원당으로의 분해 때문에 생산성이 감소하여 이의 효과적 생산에 어려움이 있다. 본 연구는 dead-end 및 cross-flow형 막 생물반응기를 사용하여 CGTase에 의한 전분의 CD 동족체로의 분해반응시 생산물 저해를 억제시켜 생산성을 향상시키고, 동시에 조작조건 변화에 따른 생산물인 CD 동족체의 효과적인 연속분리 가능성을 검토하였다.

  • PDF

Characteristics, Mass Transfer Coefficient and Effectiveness Factor of $\beta$-glucosidase Immobilized on the Diazotized Chitin in Bioreactors (Diazotized Chitin에 고정된 $\beta$-glucosidase의 생물반응기에서의 특성, 물질전달계수 및 효율인자에 관한 연구)

  • 김종덕;이경희;서석수
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.20 no.5
    • /
    • pp.494-502
    • /
    • 1991
  • Diazotized chitin(CHITN) as supports of immobilized enzyme, which was obtained by alkaline hydrolysed chitin with NaN3 and HCI was employed to produce CHITN-Gase with glutaraldehyde as bifunctional reagent. Activities of CHITN-Gase were determined with reaction of p-nitro-pheol-$\beta$-D-glucopyranoside(PNG) in plug flow reactor as a reference of CHITA-Gase. Their optimum temperature, pH, Km and Vmax, mass transfer coefficient (h), effctiveness factor(η)were plotted with variation of flow rate and H/D. Mass transfer coefficient(h) of those enzymes increased because of their flux, as flow rates were increased and controlled by reaction rate. Effectiveness factor(η) of both enzymes were nearly 1.0.

  • PDF

Estimation of Dominant Bacterial Species in a Bench-Scale Shipboard Sewage Treatment Plant

  • Mansoor, Sana;Ji, Hyeon-Jo;Shin, Dae-Yeol;Jung, Byung-Gil;Choi, Young-Ik
    • Journal of Environmental Science International
    • /
    • v.28 no.10
    • /
    • pp.899-905
    • /
    • 2019
  • Recently, an innovative method for wastewater treatment and nutrient removal was developed by combining the sequence batch reactor and membrane bioreactor to overcome pollution caused by shipboard sewage. This system is a modified form of the activated sludge process and involves repeated cycles of mixing and aeration. In the present study, the bacterial diversity and dominant microbial community in this wastewater treatment system were studied using the MACROGEN next generation sequencing technique. A high diversity of bacteria was observed in anaerobic and aerobic bioreactors, with approximately 486 species. Microbial diversity and the presence of beneficial species are crucial for an effective biological shipboard wastewater treatment system. The Arcobacter genus was dominant in the anaerobic tank, which mainly contained Arcobacter lanthieri (8.24%), followed by Acinetobacter jahnsonii (5.81%). However, the dominant bacterial species in the aerobic bioreactor were Terrimonas lutea (7.24%) and Rubrivivax gelatinosus (4.95%).

Ginsenoside Production and Morphological Characterization of Wild Ginseng (Panax ginseng Meyer) Mutant Lines Induced by γ-irradiation (60Co) of Adventitious Roots

  • Zhang, Jun-Ying;Bae, Tae-Woong;Boo, Kyung-Hwan;Sun, Hyeon-Jin;Song, In-Ja;Pham, Chi-Hoa;Ganesan, Markkandan;Yang, Dae-Hwa;Kang, Hong-Gyu;Ko, Suk-Min;Riu, Key-Zung;Lim, Pyung-Ok;Lee, Hyo-Yeon
    • Journal of Ginseng Research
    • /
    • v.35 no.3
    • /
    • pp.283-293
    • /
    • 2011
  • With the purpose of improving ginsenoside content in adventitious root cultures of Korean wild ginseng (Panax ginseng Meyer), the roots were treated with different dosages of ${\gamma}$-ray (5, 10, 25, 50, 75, 100, and 200 Gy). The growth of adventitious roots was inhibited at over 100 Gy. The irradiated adventitious roots showed significant variation in the morphological parameters and crude saponin content at 50 to100 Gy. Therefore, four mutant cell lines out of the propagation of 35 cell lines treated with 50 Gy and 100 Gy were selected on the basis of phenotypic morphology and crude saponin contents relative to the wild type control. The contents of 7 major ginsenosides ($Rg_1$, Re, $Rb_1$, $Rb_2$, Rc, Rf, and Rd) were determined for cell lines 1 and 3 from 100 Gy and lines 2 and 4 from 50 Gy treatments. Cell line 2 showed more secondary roots, longer length and superior growth rate than the root controls in flasks and bioreactors. Cell line 1 showed larger average diameter and the growth rate in the bioreactor was comparable with that of the control but greater in the flask cultured roots. Cell lines 1 and 2, especially the former, showed much more ginsenoside contents than the control in flasks and bioreactors. Therefore, we chose cell line 1 for further study of ginsenoside contents. The crude saponin content of line 1 in flask and bioreactor cultures increased by 1.4 and 1.8-fold, respectively, compared to the control. Total contents of 7 ginsenoside types ($Rg_1$, Re, $Rb_1$, $Rb_2$, Rc, Rf, and Rd) increased by 1.8 and 2.3-fold, respectively compared to the control. Crude saponin and ginsenoside contents in the bioreactor culture increased by about 1.4-fold compared to that the flask culture.

Comparison of Growth Characteristics of Tricholoma matsutake Mycelium Among the Types of Air Bubble Bioreactor (공기부양식 생물반응기의 형태별 송이균사의 생장특성 비교)

  • Lee, Wi-Young;Ahn, Jin-Kwon;Ka, Kang-Hyeon;Kwon, Young-Jin
    • The Korean Journal of Mycology
    • /
    • v.31 no.2
    • /
    • pp.89-93
    • /
    • 2003
  • In order to select suitable bioreactor type inhibiting cell stress during submerged culture of Tricholoma matsutake mycelium, the growth characteristics and ergosterol contents were investigated using the external-loop type of air-lift bioreactor (ETAB), balloon type of air bubble bioreactor (BTBB) and column type of air bubble bioreactor (CTBB). Dry weights of the T. matsutake in the BTBB, ETAB and CTBB were 12 g, 11.4 g, and 9.5 g per 1 litter, respectively. BTBB, ETAB and CTBB reached stagnant phases 16, 20, and 24 days after cultivation, respectively, The BTBB was more suitable for liquid culture of T. matsutake mycelium compared to other bioreactors owing to much mycelia product and short culture period. The ergosterol contents produced by the mycelium in the bioreactors were in sequence of BTBB, CTBB, and ETAB at every growth phase. BTBB might affect the mycelium on producing the smallest size of pellets. BTBB and CTBB got the mycelium precipitated and coagulated under operation of bioreactor sparser, whereas ETAB shown no effect of above phenomenon. A renovated bioreactor combined between a balloon shape of BTBB and an external-loop of ETAB was developed to enhance the efficiency of culture technique.

Analysis of Bacterial Community Composition in Wastewater Treatment Bioreactors Using 16S rRNA Gene-Based Pyrosequencing (16S rRNA 유전자 기반의 Pyrosequencing을 이용한 하수처리시설 생물반응기의 세균군집구조 분석)

  • Kim, Taek-Seung;Kim, Han-Shin;Kwon, Soon-Dong;Park, Hee-Deung
    • Korean Journal of Microbiology
    • /
    • v.46 no.4
    • /
    • pp.352-358
    • /
    • 2010
  • Bacterial community composition in activated sludge wastewater treatment bioreactors were analyzed using 16S rRNA gene-based pyrosequencing for the four different wastewater treatment processes. Sequences within the orders Rhodocyclales, Burkholderiales, Sphingobacteriales, Myxococcales, Xanthomonadales, Acidobacteria group 4, Anaerolineales, Methylococcales, Nitrospirales, and Planctomycetales constituted 54-68% of total sequences retrieved in the activated sludge samples, which demonstrated that a few taxa constituted majority of the activated sludge bacterial community. The relative ratio of the order members was different for each treatment process, which was assumed to be affected by different operational and environmental conditions of each treatment process. In addition, activated sludge had very diverse bacterial species (Chao1 richness estimate: 1,374-2,902 operational taxonomic units), and the diversity was mainly originated from rare species. Particularly, the bacterial diversity was higher in membrane bioreactor than conventional treatment processes, and the long solids retention time of the operational strategy of the membrane bioreactor appeared to be appropriate for sustaining diverse slow growing bacteria. This study investigating bacterial communities in different activated sludge processes using a high-throughput pyrosequencing technology would be helpful for understanding microbial ecology in activated sludge and for improving wastewater treatment in the future.

Removal of Perchlorate from Salt Water Using Microorganisms (미생물을 이용한 염수의 퍼클로레이트 제거)

  • Ahn, Yeonghee
    • Journal of Life Science
    • /
    • v.29 no.11
    • /
    • pp.1294-1303
    • /
    • 2019
  • Perchlorate is an anionic pollutant that is very soluble and stable in water. It has been detected not only in soil/ground water but also in surface water, drinking water, food, fish, and crops. Perchlorate inhibits iodine uptake by the thyroid gland and reduces production of thyroid hormones that are primarily responsible for regulation of metabolism. Although various technologies have been developed to remove perchlorate from the environment, biodegradation is the method of choice since it is economical and environmentally friendly. However there is limited information on perchlorate biodegradation in salt environment such as salt water. Therefore this paper reviews biodegradation of perchlorate in salt water and related microorganisms. Most biodegradation research has employed heterotrophic perchlorate removal using organic compounds such as acetate as electron donors. Biodegradation research has focused on perchlorate removal from spent brine generated by ion exchange technology that is primarily employed to clean up perchlorate-contaminated ground water. Continuous removal of perchlorate at up to 10% NaCl was shown when bioreactors were inoculated with enriched salt-tolerant perchlorate-reducing bacteria. However the reactors did not show long-term stable removal of perchlorate. Microorganisms belonging to ${\beta}$- and ${\gamma}$-Proteobacteria were dominant in bioreactors used to remove perchlorate from salt water. This review will help our understanding of perchlorate removal from salt water to develop a decent biotechnology for the process.