• Title/Summary/Keyword: bioreactor engineering

Search Result 446, Processing Time 0.022 seconds

Enhancement of BDNF Production by Co-cultivation of Human Neuroblastoma and Fibroblast Cells

  • Hong, Jong-Soo;Oh, Se-Jong;Kim, Sun-Hee;Park, Kwon-Tae;Cho, Jin-Sang;Park, Kyung-You;Lee, Jin-Ha;Lee, Hyeon-Yong
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.3 no.2
    • /
    • pp.51-54
    • /
    • 1998
  • It has been proved that co-cultivation of human neroblastoma cells and human fibroblast cells can enhance nerve cell growth and the production of BDNF in perfusion cultivation. In batch co-cultivation, maximum cell density was increased up to 1.76${\times}$106 viable cells/mL from 9${\times}$105 viable cells/mL of only neuroblastoma cell culture. The growth of neuroblastoma cells was greatly improved by culturing both nerve and fibroblast cells in a perfusion process, maintaining 1.5${\times}$106 viable cells/mL, which was much higher than that form fed-batch cultivation. The nerve cell growth was greatly enhance in both fed-batch and perfusion cultivations while the growth of fibroblast cells was not. It strongly implies that the factors secreted from human fibrobast cells and/or the environments of co-culture system can enhance both cell growth and BDNF secretion. Specific BDNF production rate was not enhanced in co-cultures; however, the production period was increased as the cell growth was lengthened in the co-culture case. Competitive growth between nerve cells and fibroblast cells was not observed in all cases, showing no changes of fibroblast cell growth and only enhancement of the neuroblastoma cell growth and overall BDNF production. It was also found that the perfusion cultivation was the most appropriate process for cultivating two cell lines simultaneously in a bioreactor.

  • PDF

Effects of Hydrocarbon Additions on Gas-liquid Mass Transfer Coefficients in Biphasic Bioreactors

  • Silva, Teresa Lopes da;Calado, Vitor;Silva, Nadia;Mendes, Rui L.;Alves, Sebastiao S.;Vasconcelos, Jorge M.T.;Reis, Alberto
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.11 no.3
    • /
    • pp.245-250
    • /
    • 2006
  • The effects of aliphatic hydrocarbons (n-hexadecane and n-dodecane) on the volumetric oxygen mass transfer coefficient $(k_L\;a)$ were studied in flat alveolar airlift reactor and continuous stirred tank reactors (CSTRs). In the flat alveolar airlift reactor, high aeration rates (>2vvm) were required in order to obtain efficient organic-aqueous phase dispersion and reliable $k_La$ measurements. Addition of 1% (v/v) n-hexadecane or n-dodecane increased the $k_La$ 1.55- and 1.33-fold, respectively, compared to the control (superficial velocity: $25.8{\times}10^{-3}m/s$, sparger orifice diameter: 0.5 mm). Analysis of the gas-liquid interfacial area a and the liquid film mass transfer coefficient $k_L$ suggests that the observed $k_La$ increase was a function of the media's liquid film mass transfer. Addition of 1% (v/v) n-hexadecane or n-dodecane to analogous setups using CSTRs led to a $k_La$ increase by a factor of 1.68 and 1.36, respectively (superficial velocity: $2.1{\times}10^{-3}m/s$, stirring rate: 250 rpm). These results propose that low-concentration addition of oxygen-vectors to aerobic microbial cultures has additional benefit relative to incubation in purely aqueous media.

Effects of Insect Hormones on the Replication of Nucleopolyhedrovirus

  • Zhang, Zhi-Fang;Yi, Yong-Zhu;Xiao, Qing-Li;He, Jia-Lu;Zhou, Ya-Jing;Zhang, Yuan-Xing
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.4 no.2
    • /
    • pp.137-141
    • /
    • 2002
  • An experimental study was undertaken to quantify the effects of insect hormones on the replication of nucleopolyhedrovirus (NPV). The results demonstrated that TCID/ sub 50/ at 72 h post-infection (hpi) rose systematically from 0.55$\times$10$^{8}$ /m1, for untreated cells, up to 1.67$\times$10$^{8}$ / ml at 3$\mu$g/ml, then dropped down to 1.45$\times$10$^{8}$ /m1 at 4 $\mu$g/ml, by adding ecdysone to the culture medium for Bm-N cells infected with a wild-type Bambyx mori. nucleopolyhedrovirus (BmNPV). The optimum enhancement of about 3 times on budded virus (BV) titer at 72 hpi was given at 3 $\mu$g/ml of ecdysone. While the polyhedra number had no obvious variation within the range of concentrations from 0 to 4 $\mu$g/ml. By addition of juvenile hormone analogue (JHA) into the media with this concentration range, the BmNPV TCID/ sub 50/ and polyhedra number at 72 hpi did not show significant changes. Also, the addition of either 3 $\mu$g/ml of ecdysone or 3 $\mu$g/ml of JHA to the culture media did not appear to affect the TCID/ sub 50/ and polyhedra number significantly in infected Sf-21 cells with the autographa californica nucleopolyhedrovirus (AcMNPV).

Membrane Fouling Models for Activated Sludge Cakes (활성슬러지 케이크의 분리막 오염 모델)

  • Kim, Dae Chun;Chung, Kun Yong
    • Membrane Journal
    • /
    • v.24 no.3
    • /
    • pp.249-257
    • /
    • 2014
  • This experiment was carried out for a laboratory scale activated sludge bioreactor equipped with submerged flat sheet membrane using the synthetic wastewater. The membrane system for the activated sludge solution of MLSS 5,000 mg/L was operated with constant permeate flux by continuously permeating and periodically 10 minute-permeating/2 minute-resting modes, respectively. The transmembrane pressure was measured as the permeate flux increased from 10 to $25L/m^2{\cdot}hr$ under the constant air flowrate 0.25 L/min. Also, the complete blocking, standard blocking, intermediate blocking, incompressible cake and linear compressible cake fouling models were retrofitted for the experimental data in order to determine the state of the membrane fouling. Because the transmembrane pressure fluctuated as a pulse shape for every period of 10 minute-permeating/2-minute resting mode, the membrane fouling models were separately applied for the maximum and minimum connecting lines. The linear compressible cake fouling model for the activated sludge cakes was the best fitted with the experimental results from the above five models.

Improved Purification Process for Cholera Toxin and its Application to the Quantification of Residual Toxin in Cholera Vaccines

  • Jang, Hyun;Kim, Hyo-Seung;Kim, Jeong-Ah;Seo, Jin-Ho;Carbis, Rodney
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.1
    • /
    • pp.108-112
    • /
    • 2009
  • A simplified method for the purification of cholera toxin was developed. The 569B strain of Vibrio cholerae, a recognized hyper-producer of cholera toxin, was propagated in a bioreactor under conditions that promote the production of the toxin. The toxin was separated from the bacterial cells using 0.2-${\mu}m$ crossflow microfiltration, the clarified toxin was passed through the membrane into the permeate, and the bacterial cells were retained in the retentate. The 0.2-${\mu}m$ permeate was then concentrated 3-fold and diafiltered against 10 mM phosphate buffer, pH 7.6, using 30-kDa crossflow ultrafiltration. The concentrated toxin was loaded onto a cation exchange column, the toxin was bound to the column, and most of the impurities were passed unimpeded through the column. The toxin was eluted with a salt gradient of phosphate buffer, pH 7.0, containing 1.0 M NaCl. The peak containing the toxin was assayed for cholera toxin and protein and the purity was determined to be 92%. The toxin peak had a low endotoxin level of $3.1\;EU/{\mu}g$ of toxin. The purified toxin was used to prepare antiserum against whole toxin, which was used in a $G_{M1}$ ganglioside-binding ELISA to determine residual levels of toxin in an oral inactivated whole-cell cholera vaccine. The $G_{M1}$ ganglioside-binding ELISA was shown to be very sensitive and capable of detecting as little as 1 ng/ml of cholera toxin.

Effects of Fouling Reduction by Intermittent Aeration in Membrane Bioreactors (MBR에서 간헐포기에 의한 오염저감 효과)

  • Choi, Youngkeun;Kim, Hyun-Chul;Noh, Soohong
    • Membrane Journal
    • /
    • v.25 no.3
    • /
    • pp.276-286
    • /
    • 2015
  • The effects of relaxation and backwashing on fouling in ultrafiltration were investigated using full-scale membrane bioreactors (MBRs) which operated at a constant flux of 30 LMH. This paper also estimated the feasibility of using intermittent aeration strategies for minimizing the hydraulic resistance to filtration in comparison with the continuous aeration for running MBRs. Multiple cycles of filtration (14.5 min each) and relaxation (0.5 min each) were repeated. Similarly, a backwash was conducted by replacing a relaxation after each filtration cycle for the comparative performance test. The attached cake thickness on the membrane rapidly increased, caused by subsequent no aeration leading to easier combining with gel layer and the formation of heterogeneous layer on the membrane surface. During periodic backwashing, it is expected that gel and thin cake layer might sufficiently be removed by heterogeneous layer. After periodic backwashing, subsequent cake layer formation during time of no aeration was rapid than frequent no aeration, acting as a prefilter and preventing further irreversible fouling. Based on the Pearson correlation analysis, overall period fouling (dTMP/min) and average of all cycles (dTMP/min) were strongly correlated with the on-off period of aeration for operating MBRs.

Shipboard sewage treatment using Membrane Sequence Batch Reactor (MSBR을 이용한 크루즈선 오·폐수 처리 장치)

  • Kim, In-Soo;Lee, Eon-Sung;Oh, Yeom-Jae;Kim, Eog-Jo
    • Journal of Navigation and Port Research
    • /
    • v.34 no.5
    • /
    • pp.383-388
    • /
    • 2010
  • Lab scale experiment study was carried out for biological process development on cruise. SBR(Sequence Batch Reactor), MBR(Membrane Bioreactor), and MSBR(Membrane Sequence Batch Reactor) system were investigated for practical application on shipboard sewage treatment. From the results it was suggested that MSBR system might be suitable process for cruise in terms of pollutant removal efficiency, maintenance and special environmental conditions of cruise. About 99% of BOD, 98% of COD and 99% of SS were removed in MSBR system. In addition, about 76% of total nitrogen was reduced and the total phosphorus reduction averaged 59%.

Design and Operation of the Rainwater-Greywater Hybrid System : SNU No. 39 Building (빗물-저농도 오수 하이브리드 시스템의 설계 및 운전 평가 : 서울대 39동)

  • Shim, In-tae;Park, Hyun-ju;Kim, Tschung-il;Jung, Sung-un;Han, Moo-young;Namkung, Eun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.12
    • /
    • pp.676-682
    • /
    • 2016
  • In this study, rainwater-greywater hybrid system was installed and operated for 1 year in order to evaluate its water quantity, water quality, and economic efficiency in building no. 39. This system was expected to overcome each disadvantages of and maximize each advantages. Low-greywater that was washed up from shower room was treated by MBR (Membrane Bioreactor) and ozone oxidation. Rainwater that was collected from the rooftop was stored in a reservoir, and then transferred to the storage tank that was mixed with treated greywater. After 1 year operating in building no. 39, rainwater and greywater was used to supply $2,599m^3$ of toilet flushing water. In terms of water quality, rainwater was satisfied far the greywater reuse standards except for E.coli. Moreover, low greywater quality was acceptable except for E. coli, BOD, SS, and turbidity. In addition, economic analysis was obtained from benefit-cost ratio (B/C) with 1.11. It implies that the feasibility of the project was reasonable. Furthermore, various research and policy to improve the economic efficiency of water recycling facilities is required to expand the use of water recycling facilities.

A Study on Fouling Characteristics and Applicability of Fouling Reducer in Submerged MBR Process (침지형 MBR공정에서 파울링 특성과 파울링 완화제의 적용성에 관한 연구)

  • Park, Jun Won;Park, Hong June;Kim, Min Ho;Oh, Yong Keol;Park, Chul Hwi
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.5
    • /
    • pp.371-380
    • /
    • 2013
  • Though MBR process has many advantages, the greatest risk factors in operating MBR process are occurrence of membrane fouling and decrease of flux. It is very difficult to find exact mechanism due to complex influence by many effects, although there have been recently many studies of membrane fouling. The purposes of this study are firstly evaluating bioreactor of lab-scale and micro-filtration hollow fiber membrane, secondly investigating correlation between foulants affecting membrane performance and membrane fouling, and lastly evaluating various parameters affecting fouling and applicability of membrane fouling reducer. This study found that TMP was increasing rapidly and showed 0.32 bar and the average of flux was 88 LMH. EPS concentration tends not to change much above MLSS concentration (6,000 mg/L). However, EPS concentration variation is wide below MLSS concentration (6,000 mg/L). Also, from results of membrane surface condition and element analysis using SEM/EDX, carbon and fluorine were founded to be the highest percentage in membrane because of characteristics of membrane material. In operating continuously, inorganic fouling was generated by increase of these inorganic substances such as $Al^{3+}$ and $Mg^{2+}$. Lastly, the best filtration performance was obtained for 0.03 mg MFR/mg MLSS by results of particle size, zeta potential, $SCOD_{cr}$, EPS and MLSS concentration.

Removal of VOCs and H2S from Waste Gas with Biotrickling Filter (생물살수여과법을 이용한 공기중 VOC 및 H2S 제거)

  • Kim, Kyoung-Ok;Kim, Yong-Je;Won, Yang-Soo
    • Applied Chemistry for Engineering
    • /
    • v.19 no.5
    • /
    • pp.519-525
    • /
    • 2008
  • Biodegradation of toluene, styrene and hydrogen sulfide as model compounds of volatile organic compounds and odor from waste gas was investigated experimentally in a biotrickling filter. This study focussed on the description of experimental results with regard to operating conditions. The effect of varying $H_2S$ load rate and inlet concentration was investigated under autotropic and mixotropic environmental conditions. The $H_2S$ removal efficiencies of greater than 99% were achieved at $H_2S$ loads below $10g/m^3{\cdot}hr$ for each environment. It was observed that the maximum elimination capacity of mixotrophic filter was achieved a little greater than the one of autotrophic filter. The biofiltration of toluene and styrene in trickling bed was examined under different gas flow rates, load rates, and inlet concentrations. Below $40g/m^3{\cdot}hr$ of toluene loading, the elimination capacity and loading were identical and it was completely destroyed. In high loading of toluene, the biotrickling filter was operated at its maximum elimination capacity. In the inlet concentration of 0.2, 0.5, and $1.0g/m^3$, the maximum elimination capacity of toluene showed 40, 45, and $60g/m^3{\cdot}hr$, respectively. After a short adaptation period, it was demonstrated that the results of styrene in originally toluene adapted bioreactor was similar with the ones of toluene. However, the performance of filer for styrene is generally a little lower than for toluene. The operating conditions (including liquid flow rate etc.) allowing the highest removal efficiency should be determined experimentally for each specific case.