• Title/Summary/Keyword: bioreactor design

Search Result 44, Processing Time 0.019 seconds

Design and Operation of the Rainwater-Greywater Hybrid System : SNU No. 39 Building (빗물-저농도 오수 하이브리드 시스템의 설계 및 운전 평가 : 서울대 39동)

  • Shim, In-tae;Park, Hyun-ju;Kim, Tschung-il;Jung, Sung-un;Han, Moo-young;Namkung, Eun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.12
    • /
    • pp.676-682
    • /
    • 2016
  • In this study, rainwater-greywater hybrid system was installed and operated for 1 year in order to evaluate its water quantity, water quality, and economic efficiency in building no. 39. This system was expected to overcome each disadvantages of and maximize each advantages. Low-greywater that was washed up from shower room was treated by MBR (Membrane Bioreactor) and ozone oxidation. Rainwater that was collected from the rooftop was stored in a reservoir, and then transferred to the storage tank that was mixed with treated greywater. After 1 year operating in building no. 39, rainwater and greywater was used to supply $2,599m^3$ of toilet flushing water. In terms of water quality, rainwater was satisfied far the greywater reuse standards except for E.coli. Moreover, low greywater quality was acceptable except for E. coli, BOD, SS, and turbidity. In addition, economic analysis was obtained from benefit-cost ratio (B/C) with 1.11. It implies that the feasibility of the project was reasonable. Furthermore, various research and policy to improve the economic efficiency of water recycling facilities is required to expand the use of water recycling facilities.

Characteristics of Hydrodynamics, Heat and Mass Transfer in Three-Phase Inverse Fluidized Beds (삼상 역 유동층의 수력학, 열전달 및 물질전달 특성)

  • Kang, Yong;Lee, Kyung Il;Shin, Ik Sang;Son, Sung Mo;Kim, Sang Done;Jung, Heon
    • Korean Chemical Engineering Research
    • /
    • v.46 no.3
    • /
    • pp.451-464
    • /
    • 2008
  • Three-phase inverse fluidized bed has been widely adopted with its increasing demand in the fields of bioreactor, fermentation process, wastewater treatment process, absorption and adsorption processes, where the fluidized or suspended particles are small or lower density comparing with that of continuous liquid phase, since the particles are frequently substrate, contacting medium or catalyst carrier. However, there has been little attention on the three-phase inverse fluidized beds even on the hydrodynamics. Needless to say, the information on the hydrodynamics and transport phenomena such as heat and mass transfer in the inverse fluidized beds has been essential for the operation, design and scale-up of various reactors and processes which are employing the three-phase inverse beds. In the present article, thus, the information on the three-phase inverse fluidized beds has been summarized and reorganized to suggest a pre-requisite knowledge for the field work in a sense of engineering point of view. The article is composed of three parts; hydrodynamics, heat and mass transfer characteristics of three-phase inverse fluidized beds. Effects of operating variables on the phase holdup, bubble properties and particle fluctuating frequency and dispersion were discussed in the section of hydrodynamics; effects of operating variables on the heat transfer coefficient and on the heat transfer model were discussed in the section of heat transfer characteristics ; and in the section of mass transfer characteristics, effects of operating variables on the liquid axial dispersion and volumetric liquid phase mass transfer coefficient were examined. In each section, correlations to predict the hydrodynamic characteristics such as minimum fluidization velocity, phase holdup, bubble properties and particle fluctuating frequency and dispersion and heat and mass transfer coefficients were suggested. And finally suggestions have been made for the future study for the application of three-phase inverse fluidized bed in several available fields to meet the increasing demands of this system.

Effect of Environmental Factors on the Growth of Rabbit Oral Keratinocytes (토끼 구강점막 상피세포 성장에 미치는 환경인자의 영향)

  • Yoon, Moon-Young;Park, Hee-Jung;Lee, Doo-Hoon;Jang, In-Keun;Park, Jung-Keug;Kim, Woo-Sik
    • Korean Chemical Engineering Research
    • /
    • v.43 no.1
    • /
    • pp.103-109
    • /
    • 2005
  • Isolation and primary culture technique of rabbit oral keratinocytes, and the study for effect of environmental factors on the cell growth were carried out in T75-flask. $1.92{\pm}0.59{\times}10^6$ viable cells were isolated by trypsin enzymatic digestion method from $0.25cm^2$ biopsy of rabbit oral mucosa. Primary culture with 10 mL of K-SFM containing 50 mg/L BPE, $5.0{\mu}g/L$ EGF and 0.15 mM $Ca^{2+}$ showed confluence after 8 days and doubling time was 2.54 days. Effect of medium types, medium volume and supplement types on the cell growth was investigated after the cultured keratinocytes had been harvested from primary confluence. Serum addition showed adverse effect and the increase of serum concentration didn't have an effect on the cell growth. The increase of medium volume decreased the cell growth. The increase of calcium concentration increased the cell growth and 2.0 mM was optimum value. In conclusion, when rabbit oral keratinocytes was cultured in T75-flask, the most effective conditions was to use 10 mL of K-SFM containing 50 mg/L BPE, $5.0{\mu}g/L$ EGF and 2.0 mM $Ca^{2+}$, and doubling time was 1.32 days. This study can provide the useful informations to develop a process and design a bioreactor for the culture of keratinocytes in human body like skin and cornea, as well as mucosa.

Improvement of Nitrification Efficiency by Activated Nitrifying Bacteria Injection at Low Temperature (활성화된 질산화균 주입에 의한 저온 질산화효율 향상)

  • Lim, Dongil;Kim, Younghee
    • Journal of the Korean Society of Urban Environment
    • /
    • v.18 no.4
    • /
    • pp.473-483
    • /
    • 2018
  • In this study, we have developed a lab scale bioreactor to identify the characteristics of nitrification reaction according to operation condition (temperature, inhibitor (as Cl), activated nitrifying bacteria (ANB). etc) to improve nitrification efficiency at low temperature. Recovery rate of nitrification took about 4 days to reach the normal level by injected ANB after inhibition shock of CI injection at $20^{\circ}C$, when measured the concentration of $NO_2{^-}-N+NO_3{^-}-N$ in the effluent. In the case of $10^{\circ}C$, recovery of nitrification rate took about 4 days to reach the level of half to the normal level and 7 days for complete recovery which took 3 days more than those at $20^{\circ}C$. At $10^{\circ}C$ considering the winter season, the specific nitrification rate(SNR) of the from 1 day to 6 days after injected ANB according to its operation condition increased from 0.029 to 0.767 mgN/gSS/hr. The simulated SNR for the 8th day after the injected ANB at $10^{\circ}C$ was 0.840, 3.625 mgN/gSS/hr, respectively as linear function and exponential function, expecting to exceed level of 2.592 mgN/gSS/hr at normal condition. It was confirmed that injection of ANB during low temperature operation has many effects for improving nitrification efficiency through this study. In future studies, if further studies are carried out the determination of ANB injection and the design of efficient ANB reactor considering the changes of operating characteristics by site, it will contribute to the improvement of nitrification efficiency in winter season.