• Title/Summary/Keyword: biopreservative

Search Result 16, Processing Time 0.018 seconds

Enhancing the Viability Rate of Probiotic by Co-Encapsulating with Prebiotic in Alginate Microcapsules Supplemented to Cupcake Production

  • Dong, Lieu My;Luan, Nguyen Thien;Thuy, Dang Thi Kim
    • Microbiology and Biotechnology Letters
    • /
    • v.48 no.2
    • /
    • pp.113-120
    • /
    • 2020
  • The objective of the study was to assess the survival of microencapsulated Lactobacillus plantarum ATCC8014 produced using the emulsion technique in alginate gel combined with pectin and maltodextrin components. The microcapsules were then added to cupcake dough that was further baked at 200℃ for 12 min. The viability of L. plantarum was assessed during baking and the 10 days of storage at 4℃ as well as in simulated gastrointestinal conditions. In addition, yeast-mold and water activity were investigated. After baking, the samples with microencapsulated L. plantarum contained more than 5 log CFU/g, which was higher compared to the bacterial concentration of the control samples. The concentration of L. plantarum was more than 6 logs CFU/g after the end of the storage; therefore, the probiotic functioned as a biopreservative in the cake. The prebiotic component strengthened the microcapsules network and helped protect the viability of L. plantarum in simulated gastric fluid (SGF) and simulated intestinal fluid (SIF) media. The results show that the addition of L. plantarum microencapsules did not affect the sensory scores of the cupcake while ensuring the viability of the probiotic during baking and storing.

Antilisterial Effect of Bacteriocin SH01, Obtained from Enterococcus faecium SH01, in Ground Beef

  • Kim, Min-Ju;Jung, Miran;Kim, Wang June
    • Food Science of Animal Resources
    • /
    • v.35 no.2
    • /
    • pp.211-215
    • /
    • 2015
  • From the previous study, Enterococcus faecium SH01 was isolated from mukeunji, an over-ripened kimchi, and it produced bacteriocin SH01. Bacteriocin SH01 showed an inhibitory effect against Listeria monocytogenes ATCC 19111, a bacterial strain causing human listeriosis. Crude bacteriocin SH01 was purified by ammonium sulfate precipitation and its inhibitory activity at two concentrations (500 and 1,000 AU/g) against Listeria monocytogenes ATCC 19111 was investigated in ground beef at increasing temperatures (5, 10, 15, and 20℃) for 8 d. The number of Listeria monocytogenes ATCC 19111 significantly decreased (p<0.05) as the concentration of bacteriocin increased from 500 to 1,000 AU/g. Intrinsic crude protease activities in ground beef were examined and increased as the temperature increased. Experiments varying both the concentrations of added bacteriocin SH01 and temperature demonstrated a maximum inhibition (2.33 log reduction of bacteria) in samples containing 1,000 AU/g of bacteriocin SH01 incubated at 20℃. When the crude bacteriocin SH01 solution (1,280 AU/mL) was incubated with crude protease solutions at different temperatures, its activity decreased by only half (640 AU/mL), as assessed in an agar well diffusion assay. The finding that the antilisterial activity of bacteriocin SH01 increased with temperature can be explained by the fact that higher temperatures increase bacterial membrane fluidity, thereby promoting the cellular penetration of bacteriocin SH01 into L. monocytogenes. Bacteriocin SH01 may be an excellent candidate as a biopreservative for controlling L. monocytogenes growth in ground beef.

Purification and Characterization of Phocaecin PI80: An Anti-Listerial Bacteriocin Produced by Streptococcus phocae PI80 Isolated from the Gut of Peneaus indicus (Indian White Shrimp)

  • Satish Kumar, Ramraj;Arul, Venkatesan
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.11
    • /
    • pp.1393-1400
    • /
    • 2009
  • A bacteriocin-producing strain PI80 was isolated from the gut of Penaeus indicus (Indian white shrimp) and identified as Streptococcus phocae PI80. The bacteriocin was purified from a culture supernatant to homogeneity as confirmed by Tricine SDS-PAGE. Reverse-phase HPLC analysis revealed a single active fraction eluted at 12.94 min, and MALDI-TOF mass spectrometry analysis showed the molecular mass to be 9.244 kDa. This molecular mass does not correspond to previously described streptococcal bacteriocins. The purified bacteriocin was named phocaecin PI80 from its producer strain, as this is the first report of bacteriocin production by Streptococcus phocae. The bacteriocin exhibited a broad spectrum of activity and inhibited important pathogens: Listeria monocytogenes, Vibrio parahaemolyticus, and V. fischeri. The antibacterial substance was also sensitive to proteolytic enzymes: trypsin, protease, pepsin, and chymotrypsin, yet insensitive to catalase, peroxidase, and diastase, confirming that the inhibition was due to a proteinaceous molecule (i.e., the bacteriocin), and not due to hydrogen peroxide or diacetyl. Phocaecin PI80 moderately tolerated heat treatment (up to $70^{\circ}C$ for 10 min) and resisted certain solvents (acetone, ethanol, and butanol). A massive leakage of $K^+$ ions from E. coli $DH5\alpha$, L. monocytogenes, and V. parahaemolyticus was induced by phocaecin PI80, as measured by Inductively Coupled Plasma Optical Emission Spectrometry (ICPOES). Therefore, the results of this study show that phocaecin PI80 may be a useful tool for inhibiting L. monocytogenes in seafood products that do not usually undergo adequate heat treatment, whereas the cells of Streptococcus phocae PI80 could be used to control vibriosis in shrimp farming.

Antilisterial activity of fresh cheese fermented by Lactobacillus paracasei BK57 (Lactobacillus paracasei BK57 균주로 발효시킨 프레쉬 치즈의 항리스테리아 활성)

  • Lim, Eun-Seo;Lee, Eun-Woo
    • Korean Journal of Microbiology
    • /
    • v.51 no.4
    • /
    • pp.407-418
    • /
    • 2015
  • This study is focused on establishing the optimal conditions to enhance the production of antilisterial substances by Lactobacillus paracasei BK57 isolated from Baikkimchi. In addition, the growth and in situ lactic acid and bacteriocin production of this strain were investigated during the manufacture of fresh cheese. And then the efficacy of using Lactobacillus starter as a protective culture to improve the safety of fresh cheese against Listeria monocytogenes KCTC 3569 was estimated. Maximum growth rate and activity of antibacterial substances were obtained in Lactobacilli MRS broth at $37^{\circ}C$ with controlled pH 6.0 after 30 h of incubation under aerobic condition. However, the growth rate and antimicrobial activity of bacteriocin produced in whole milk supplemented with yeast extract (2.0%) as a substrate were lower than those obtained in MRS broth. Live cells and cell-free culture supernatant of BK57 strain were effective in the suppression of L. monocytogenes in milk, whereas the inhibitory of the bacteriocin obtained from BK57 strain was higher in BHI broth than in milk. During storage at $4^{\circ}C$ and $15^{\circ}C$ for 6 days, no significant difference was found in the cell viability and antimicrobial activity of BK 57 strain in fresh cheese. In samples held at two temperatures, there was at least a 15% reduction in the numbers of the pathogen in fresh cheese artificially contaminated with approximately $10^5CFU/ml$ of L. monocytogenes within 6 days. Our results demonstrated the usefulness of L. paracasei BK57 having antilisterial activity as a biopreservative in the cheese making process.

Isolation of Bacillus velezensis SSH100-10 with Antifungal Activity from Korean Traditional Soysauce and Characterization of Its Antifungal Compounds (전통재래 간장으로부터 항진균 활성 B. velezensis SSH100-10의 분리와 그 항진균 물질의 특성 구명)

  • Chang, Mi;Moon, Song Hee;Chang, Hae Choon
    • Food Science and Preservation
    • /
    • v.19 no.5
    • /
    • pp.757-766
    • /
    • 2012
  • The SSH100-10 bacterial strain, which exhibits strong antifungal (anti-mold and anti-yeast) activity, was isolated from traditional korean soysauce aged 100 years. The strain was identified as Bacillus velezensis based on Gram-staining, the biochemical properties and 16S rRNA gene sequence determination. B. velezensis SSH100-10 showed strong proteinase activity and NaCl tolerance, but did not produce enterotoxin. Two-antifungal compounds from B. velezensis SSH100-10 were purified using SPE, preparative HPLC, and reverse phase-HPLC. The purified antifungal compounds were identified as $C_{14}$ and $C_{15}$ iturin through MALDI-TOF-MS and amino acid composition analysis. The stability characteristics of the antifungal compounds after temperature, pH, and enzyme treatments suggested that B. velezensis SSH100-10 produced more than two antifungal compounds; pH-stable $C_{14}$ iturin A and $C_{15}$ iturin A, and unidentified pH-unstable compounds. The results suggested that B. velezensis SSH100-10 can be used in soybean fermentation as a starter. Moreover it has potential as a biopreservative in the food and feed industry and as a biocontrol agent in the field of agriculture.

Characterization of Bacteriocin Produced from Isolated Strain of Bacillus sp. (Bacillus 속 분리주가 생산하는 박테리오신의 특성 조사)

  • Ham, Seung-Hee;Choi, Nack-Shick;Moon, Ja-Young;Baek, Sun-Hwa;Lee, Song-Min;Kang, Dae-Ook
    • Journal of Life Science
    • /
    • v.27 no.2
    • /
    • pp.202-210
    • /
    • 2017
  • As an effort to find a potential biopreservative, we isolated bacterial strains producing bacteriocin from fermented foods. A strain was finally selected and characteristics of the bacteriocin were investigated. The selected strain was identified as Bacillus subtilis E9-1 based on the 16S rRNA gene analysis. The culture supernatant of B. subtilis E9-1 showed antimicrobial activity against Gram-positive bacteria. Subtilisin A, ${\alpha}$-chymotrypsin, trypsin and proteinase K inactivated the antimicrobial activity, which means its proteinaceous nature, a bacteriocin. The bacteriocin activity was fully retained at the pH range from 2.0 to 8.0 and stable at up to $100^{\circ}C$ for 60 min. Solvents such as ethanol, isopropanol and methanol had no effect on the antimicrobial activity at the concentration of 100% but acetone and acetonitrile reduced the activity at up to 100% concentration. Cell growth of four indicator strains was dramatically decreased in dose-dependent manner. Listeria monocytogenes was the most sensitive, but Enterococcus faecium was the most resistant. Bacillus cereus and Staphylococcus aureus showed the medium sensitivity. The bacteriocin showed its antimicrobial activity against B. cereus and L. monocytogenes via bactericidal action. The number of viable cells of L. monocytogenes started to reduce after addition of bacteriocin to the minced beef. The bacteriocin was purified through acetone concentration, gel filtration chromatography and RP-HPLC. The whole purification step led to a 6.82 fold increase in the specific activity and 6% yield of bacteriocin activity. The molecular weight of the purified bacteriocin was determined to be 3.3 kDa by MALDI-TOF/TOF mass spectrometry.