• Title/Summary/Keyword: biomethane production

Search Result 20, Processing Time 0.027 seconds

Optimization of biomethane production by biogas upgrading process using response surface mothodolgy (반응표면분석을 이용한 바이오가스 고질화공정을 통한 바이오메탄)

  • Park, Seong-Bum;Sung, Hyun-Je;Shim, Dong-Min;Kim, Nack-Joo
    • Journal of Energy Engineering
    • /
    • v.23 no.2
    • /
    • pp.62-73
    • /
    • 2014
  • This research was focused to apply response surface methodology for optimization of bio-methane production by biogas upgrading process. Methane concentration(Y1) and methane efficiency(Y2) on biogas upgrading process were mathematically described as being modeled by the use of the Box-Behnken design on response surface methodology. The results of ANOVA(analysis of variance) about models, the probability value of the methane concentration and methane recovery response surface model are 0.0001 and 0.0001, respectively and coefficient of determination($R^2$) are 0.9788 and 0.9710, respectively. The response surface model is proved of high reliability and suitability. The operation pressure had the greatest influence to methane concentration than other operation parameters and the PSA rotary valve velocity had the greatest influence to methane recovery than other operation parameters. Optimal condition of biogas upgrading process for production of $100Nm^3/hr$ bio-methane were operation pressure 8.0bar and outlet flow rate 31.55RPM, respectively. At that operation condition the methane concentration of bio-methane was 97.13% and methane recovery in biogas upgrading process was 75.89%.

Trends of Green Policies of Biogas Renewable Technology using POME in Malaysia (말레이시아 팜오일폐수 POME(Palm Oil Mill Effluent)를 이용한 바이오가스 신재생에너지기술 그린정책 동향)

  • Park, Young Gyu
    • Journal of Korea Society of Waste Management
    • /
    • v.35 no.7
    • /
    • pp.571-586
    • /
    • 2018
  • The Malaysian biogas upgrading technologies and policies were examined. In Malaysia, the regulation of palm oil mill effluent (POME) has been enforced to reduce the biochemical oxygen demand to 20 ppm and the biogas capture in the palm oil mills have been recently enforced for renewable energy. A huge amount of organic waste is produced from POME, and 80 million tons from palm oil trees, every year. Due to the renewable energy trends, the Malaysian government is modifying the use of biogases as fuels in favor of their conversion into compressed natural gas (CNG) and other chemicals; various green policies are being promoted because of many advantages of the organic substances. The Korean policies for biogas are a good model for exporting environmental plants after upgrading the digestion and purification technologies. Therefore, this article introduces the current status of POME and biogas production in Malaysia, it could encourage creating a new market for biomethane.

Economic Evaluation of Two-step Biohydrogen/biomethane Production Process (이단계 바이오 수소/메탄 생산공정의 경제성 평가)

  • Oh, You-Kwan;Kim, Yu-Jin;Kim, Mi-Sun;Park, Sung-Hoon
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.17 no.1
    • /
    • pp.98-108
    • /
    • 2006
  • 본 연구에서는 이 단계 연속 바이오 수소/메탄 생산공정의 경제성을 조사하였다. 경제적 관점에서 다양한 수소 및 메탄 발효용 생물반응기를 비교 평가하였다. 이를 바탕으로 포도당으로부터 일 단계 수소발효를 위해 고온 trickling biofilter 반응기 (TBR, $100\;m^3$ 규모)를, 일 단계 반응의 부산물로 생성된 유기산과 알콜류의 이 단계 메탄전환을 위해 고온 upflow anaerobic sludge 반응기 (UASB; $700\;m^3$ 규모)를 선정하였다. 본 이 단계 공정의 수소생산 비용은 $$\;0.26/Nm^3$으로 계산되었고, 이는 고온 TBR 반응기만을 이용한 경우보다 약 30 % 낮았다. 이 단계 공정의 낮은 수소생산 비용은 높은 에너지 회수율과 낮은 슬러지 처리비용에 의한 것이었다. 생물학적 수소 생산공정의 경제성은 탄소원의 종류, 생물반응기의 형태 등 여러 인자에 의해 변경될 수 있으나, 본 연구결과는 향후 연구를 위한 유용한 기준으로 고려될 수 있다.

Biogas Production from Anaerobic Co-digestion Using the Swine Manure and Organic Byproduct (돈분과 유기성 부산물을 혼합한 혐기소화에서 바이오가스 생산)

  • Kim, W.G.;Oh, I.H.;Yang, S.Y.;Lee, K.M.;Lee, S.I.
    • Journal of Animal Environmental Science
    • /
    • v.17 no.1
    • /
    • pp.49-54
    • /
    • 2011
  • Animal manure is produced annually 43.7 million tonnes in Korea. Among them, about 85.6 % are used as compost or liquid fertilizer to the agricultural land. The animal manure can be effectively utilized by mixing with organic byproducts that result in generation of biogas from anaerobic co-digestion process. This study aimed to optimize the content of total solid materials (TS) and determine the effect of organic byproduct on the co-digestion process. Prior to the byproduct treatments, determination of proper content of TS was conducted by controlling at 5 or 10 %. For the byproduct treatments, swine manure without adding the byproduct was used for control treatment, and swine manure mixed with either corn silage or kitchen waste was used for other treatments. Volume of biomethane ($CH_4$) generated from digested materials was quantified before and after byproduct treatments. In result, a 1.4-fold higher biomethane, about 0.556 L/$L{\cdot}d$, was produced when the content of TS was controlled at 10 %, compared at 5 %, about 0.389 L/$L{\cdot}d$. When the swine manure was mixed with the corn silage or kitchen waste, a two-fold higher biomethane was produced, about 1.theand 1.0heL/$L{\cdot}d$, respectively, compared to the control treatment. Biogas production from organic dry matter (odm) was a3, 362eand 2h6 L/kg odm${\cdot}$d for control, corn silage, and kitchen waste treatment, respectively. The lower biogas production in the treatment of kitchen waste than that of corn silage is associated with its relatively high odm contents. The methane concentration during the whole process ranged from 40 at the beginning to 70 % at the end of process for both the control and kitchen waste treatments, and ranged from 52 to 70 % for the corn silage treatment. Hydrogen sulfide ($H_2S$) concentration ranged between 350 and 500 ppm. All the integrated results indicate that addition of organic byproduct into animal manure can double the generation of biogas from anaerobic fermentation process.

Process Modeling and Economic Analysis of Hydrogen Production System on 500 kg-H2/d-class Green Hydrogen Station using Biogas (바이오가스 이용 500 kg-H2/d급 그린수소충전소의 수소추출시스템 공정모델링 및 경제성 분석)

  • Hong, Gi Hoon;Song, Hyoungwoon
    • Journal of the Korean Institute of Gas
    • /
    • v.25 no.4
    • /
    • pp.19-26
    • /
    • 2021
  • In this paper, we carried out the process modelling and economical analysis of the 500 kg-H2/d-class green hydrogen production system process based on biomethane from the Food Bio Energy Center in Chungju. As a result of economic analysis, the NPV(Net present value) after 15 years of operation is 3.831 billion won, the PI(Profitability index method) is 1.42. It was found that the project of 500 kg-H2/d-class green hydrogen production system has a 20.25% of IRR, which is higher than social discount rate of 4.5% and feasibility is ensured.

Empirical Study of Biogas Purification Equipment (바이오가스 정제 설비의 실증 연구)

  • Hwan Cheol Lee;Jae-Heon Lee
    • Plant Journal
    • /
    • v.18 no.4
    • /
    • pp.58-65
    • /
    • 2023
  • In this study, to increase the methane content of biogas supplied from Nanji Water Regeneration Center and to purify impurities, a three-stage membrane purification process was designed and installed to demonstrate operation. The methane concentration of biomethane produced in the 2 Nm3/h purification process was set to three cases: 95%, 96.5%, and 98%, and the membrane area ratio of the membrane was 1:1, 1:2, 1:1:1, The optimum conditions for the membrane area of the separator were derived by changing to five of 1:2:1 and 1:2:2. 3 stage separation membrane process of 30 Nm3/h was installed to reflect the optimum condition of 2 Nm3/h, and biomethane production of 98% or more of methane concentration was demonstrated. As a result of the operation of the 2 Nm3/h refining device, the methane recovery rate at the 98% methane concentration was 95.6% when the membrane area ratio was 1:1 as the result of the two-stage operation of the separator, and the recovery rate of methane at 1:2 was increased to 96.8%. The methane recovery rate of the membrane three-stage operation was highest at 96.8% when the membrane area ratio was operated at 1:2:1. The carbon dioxide removal rate was 16.4 to 96.4% and the 2:2 to 95.7% film area ratio in the two-step process. In the three-step process, the film area ratio was 1:2:1 to 95.4%, and the two-step process showed higher results than the three-step process. In the 30 Nm3/h scale biogas purification demonstration operation, the methane concentration after purification was 98%, the recovery rate of methane was 97.1%, the removal rate of carbon dioxide was 95.7%, and hydrogen sulfide, the cause of corrosion, was not detected, and the membrane area ratio was 1:2:1 demonstration operation, biomethane production with a methane concentration of 98% or higher was possible.

  • PDF

A Study on Increasing the Efficiency of Biogas Production using Mixed Sludge in an Improved Single-Phase Anaerobic Digestion Process (개량형 단상 혐기성 소화공정에서의 혼합슬러지를 이용한 바이오가스 생산효율 증대방안 연구)

  • Jung, Jong-Cheal;Chung, Jln-Do;Kim, San
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.6
    • /
    • pp.588-597
    • /
    • 2016
  • In this study, we attempted to improve the biogas production efficiency by varying the mixing ratio of the mixed sludge of organic wastes in the improved single-phase anaerobic digestion process. The types of organic waste used in this study were raw sewage sludge, food wastewater leachate and livestock excretions. The biomethane potential was determined through the BMP test. The results showed that the biomethane potential of the livestock excretions was the highest at $1.55m^3CN4/kgVS$, and that the highest value of the composite sample, containing primary sludge, food waste leachate and livestock excretions at proportions of 50%, 30% and 20% respectively) was $0.43m^3CN4/kgVS$. On the other hand, the optimal mixture ratio of composite sludge in the demonstration plant was 68.5 (raw sludge) : 18.0 (food waste leachate) : 13.5 (livestock excretions), which was a somewhat different result from that obtained in the BMP test. This difference was attributed to the changes in the composite sludge properties and digester operating conditions, such as the retention time. The amount of biogas produced in the single-phase anaerobic digestion process was $2,514m^3/d$ with a methane content of 62.8%. Considering the value of $2,319m^3/d$ of biogas produced as its design capacity, it was considered that this process demonstrated the maximum capacity. Also, through this study, it was shown that, in the case of the anaerobic digestion process, the two-phase digestion process is better in terms of its stable tank operation and high efficiency, whereas the existing single-phase digestion process allows for the improvement of the digestion efficiency and performance.

Thermophilic Anaerobic Biodegradability of Agro-industrial Biomass (농축산바이오매스 고온 혐기성 생분해도 평가)

  • Heo, Namhyo;Kang, Ho;Lee, Seungheon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.101-101
    • /
    • 2010
  • Anaerobic digestion(AD) is the most promising method for treating and recycling of different organic wastes, such as organic fraction of municipal solid waste, household wastes, animal manure, agro-industrial wastes, industrial organic wastes and sewage sludge. During AD, i.e. organic materials are decomposed by anaerobic forming bacteria and fina1ly converted to excellent fertilizer and biogas which is a mixture of carbon dioxide and methane. AD has been one of the leading technologies that can make a large contribution to produce renewable energy and to reduce $CO_2$ and other green-house gas(GHG) emission, it is becoming a key method for both waste treatment and recovery of a renewable fuel and other valuable co-products. Currently some 80% of the world's overall energy supply of about 400 EJ per year in derived from fossil fuels. Nevertheless roughly 10~15% of this demand is covered by biomass resources, making biomass by far the most important renewable energy source used to date. The representative biofuels produced from the biomass are bioethanol, biodiesel and biogas, and currently biogas plays a smaller than other biofuels but steadily growing role. Traditionally anaerobic digestion applied for different biowaste e.g. sewage sludge, manure, other organic wastes treatment and stabilization, biogas has become a well established energy resource. However, the biowaste are fairly limited in respect to the production and utilization as renewable source, but the plant biomass, the so called "energy crops" are used for more biogas production in EU countries and the investigation on the biomethane potential of different crops and plant materials have been carried out. In Korea, with steadily increasing oil prices and improved environmental regulations, since 2005 anaerobic digestion was again stimulated, especially on the biogasification of different biowastes and agro-industrial biomass including "energy crops". This study have been carried out to investigate anaerobic biodegradability by the biochemical methane potential(BMP) test of animal manures, different forage crops i.e. "energy crops", plant and industrial organic wastes in the condition of thermophilic temperature, The biodegradability of animal manure were 63.2% and 58.2% with $315m^3CH_4/tonVS$ of cattle slurry and $370m^3CH_4/tonVS$ of pig slurry in ultimate methane yields. Those of winter forage crops were the range 75% to 87% with ultimate methane yield of $378m^3CH_4/tonVS$ to $450m^3CH_4/tonVS$ and those of summer forage crops were the range 81% to 85% with ultimate methane yield of $392m^3CH_4/tonVS$ to $415m^3CH_4/tonVS$. The forge crops as "energy crops" could be used as good renewable energy source to increase methane production and to improve biodegradability in co-digestion with animal manure or only energy crop digestion.

  • PDF

Evaluation of different types of mixed microbial culture for biomethanation of CO2 (식종슬러지 종류에 따른 이산화탄소 이용 바이오메탄 생산 비교)

  • Kim, Tae-Hoon;Lim, Byung-Seo;Yi, Sung-Ju;Yun, Gwang-Sue;Ahn, Byung-Kyu;Enkhtsog, Michidmaa;Yun, Yeo-Myeong
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.28 no.1
    • /
    • pp.65-72
    • /
    • 2020
  • The aims of this study were to compare the biomethanation of CO2 through specific methanogenic activity (SMA) test which was inoculated with four different types of mixed microbial culture obtained from full-scale anaerobic digestion (AD) plants. The experimental results showed that CH4 conversion was the highest in the samples inoculated by seed sludge taken from ADs of food waste and brewery; under this condition, the produced biomethane contains 89.3-91.9% of CH4. Meanwhile, the lowest level was obtained in the sample from sewage sludge. The measured ratio of CH4 production rate to CO2 consumption rate in all reactors was higher than the theoretical value (1) in the middle of the period and soon dropped to 0.7-0.8. It might be due to changed metabolic pathways in the reactor by the degradation of residual organic matter and the increased activity of homoacetogenic bacteria.

Integrated Digestion of Thermal Solubilized Sewage Sludge to Improve Anaerobic Digestion Efficiency of Organic Waste (유기성 폐기물의 혐기성 소화효율 향상을 위한 열가용화 하수슬러지의 통합소화)

  • Oh, Kyung Su;Hwang, Jung Ki;Song, Young Ju;Kim, Min Ji;Park, Jun Gyu;Pak, Dae Won
    • Journal of Korean Society on Water Environment
    • /
    • v.38 no.2
    • /
    • pp.95-102
    • /
    • 2022
  • Studies for improving the efficiency of the traditional anaerobic digestion process are being actively conducted. To improve anaerobic digestion efficiency, this study tried to derive the optimal pretreatment conditions and mixing conditions by integrating the heat solubilization pretreatment of sewage sludge, livestock manure, and food waste. The soluble chemical oxygen demand (SCOD) increase rate of sewage sludge before and after heat solubilization pretreatment showed an increased rate of 224.7% compared to the control group at 170℃ and 25 min and showed the most stable increase rate. As a result of the biomethane potential test of sewage sludge before and after heat solubilization pretreatment, the total chemical oxygen demand (TCOD) and SCOD removal rates increased as the heat solubilization temperature increased, but did not increase further at temperatures above 170℃. In the case of methane generation, there was no significant change in the cumulative methane generation from 0.134 to 0.203 Sm3-CH4/kg-COD at 170℃ for 15 min. As a result of the integrated digestion of organic waste, the experimental condition in which 25% of the sewage sludge, 50% of the food waste, and 25% of the livestock manure were mixed showed the highest methane production of 0.3015 m3-CH4/kg-COD, confirming that it was the optimal mixing ratio condition. In addition, under experimental conditions mixed with all three substrates, M4 conditions mixed with 25% sewage sludge, 50% food waste, and 25% livestock manure showed the highest methane generation at 0.2692 Sm3-CH4/kg-COD.